物理学与电子学

基于第一原理计算拟合Ag、Si 和C原子间作用势的研究

  • 王永伟 ,
  • 郭永亮 ,
  • 张伟 ,
  • 柯学志
展开
  • 1. 华东师范大学 物理与材料科学学院, 上海 200241;
    2. 中国科学院 上海应用物理研究所, 上海 201800
王永伟,男,硕士研究生,研究方向为统计和凝聚态理论.E-mail:wangyongwe13@163.com.

收稿日期: 2016-07-22

  网络出版日期: 2017-07-20

Interatomic potential fitting study of Ag, Si and C based on first-principle calculations

  • WANG Yong-wei ,
  • GUO Yong-liang ,
  • ZHANG Wei ,
  • KE Xue-zhi
Expand
  • 1. School of Physics and Materials Science, East China Normal University, Shanghai 200241, China;
    2. Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China

Received date: 2016-07-22

  Online published: 2017-07-20

摘要

为了实现Ag在SiC晶体中扩散的分子动力学模拟,根据第一性原理计算结果,采用“力匹配”方法对Ag、Si和C原子间相互作用势进行拟合,并用晶格常数、内聚能、体弹性模量、弹性常数和缺陷形成能等进行了势函数的验证.结果表明,拟合所得的势对Si、C和SiC晶体的内聚能、晶格常数和体弹性模量的计算非常准确,最大误差不超过0.6%;并且,该势对Si和C晶体中空位与间隙形成能及SiC晶体中Si与C空位形成能的计算值比采用J.Tersoff给出的势的计算值更精确;此外,该势对16种AgSiC三原子体系缺陷形成能的计算也比较精确.

本文引用格式

王永伟 , 郭永亮 , 张伟 , 柯学志 . 基于第一原理计算拟合Ag、Si 和C原子间作用势的研究[J]. 华东师范大学学报(自然科学版), 2017 , (4) : 114 -125 . DOI: 10.3969/j.issn.1000-5641.2017.04.010

Abstract

In order to perform molecular dynamics simulations of Ag diffusion in SiC crystals, we use “force-matching” method to fit the interatomic interaction potentials of Ag, Si and C based on first-principle calculations. The effectiveness of our obtained potential functions are verified by the calculations of the lattice constants, cohesive energies, bulk modulus, elastic constants and defect formation energies, etc. The results show that the and interstitial formation energies of Si and C crystals and Si and C vacancy formation of SiC crystals calculated by our potentials are more accurate than that calculated by J. Tersoff's potentials. In addition, the formation energies of the 16 kinds of AgSiC three-atom defect systems can also be calculated accurately by our potentials. values of cohesive energies, lattice constants and bulk modulus can be calculated precisely by our potentials, and the maximum error does not exceed 0.6%. The values of vacancies

参考文献

[1] RUBIN S D. TRISO-coated particle fuel phenomenon identification and ranking tables (PIRTs) for fission product transport due to manufacturing, operations and accidents[R]. USA: US-NRC, 2004.
[2] VERFONDERN K. Fuel performance and fission product behavior in gas-cooled reactors No. TECDOC-978[R]. Vienna: IAEA, 1997.
[3] MINATO K, SAWA K, KOYA T, et al. Fission product release behavior of individual coated fuel particles for high-temperature gas-cooled reactors[J]. Nucl Technol, 2000, 131: 36-47.
[4] SCHENK W, POTT G, NABIELEK H. Fuel accident performance testing for small HTRs[J]. J Nucl Mater, 1990, 175: 19-30.
[5] MINATO K, OGAWA T, FUKUDA K, et al. Release behavior of metallic fission products from HTGR fuel particles at 1 600 to 1 900 ℃[J]. J Nucl Mater, 1993, 202: 47-53.
[6] FRIEDLAND E, MALHERBE J B, VANDERBERG N G, et al. Study of silver diffusion in silicon carbide[J]. J Nucl Mater, 2009, 389: 326-331.
[7] MACLEAN H, BALLINGER R, KOLAYA L, et al. The effect of annealing at 1500 ℃ on migration and release of ion implanted silver in CVD silicon carbide[J]. J Nucl Mater, 2006, 357: 31-47.
[8] BULLOCK R E. Fission-product release during postirradiation annealing of several types of coated fuel particles[J]. J Nucl Mater, 1984, 125: 304-319.
[9] PETTI D, BUONGIORNO J, MAKI J, et al. Key differences in the fabrication, irradiation and high temperature accident testing of US and German TRISO-coated particle fuel, and their implications on fuel performance[J]. Nucl Eng Des, 2003, 222: 281-297.
[10] NABIELEK H, BROWN P E, OFFERMAN P. Silver release from coated particle fuel[J]. Nucl Technol, 1977, 35: 483-493.
[11] VERFONDERN K, MARTIN R C, MOORMANNN R. Methods and data for HTGR fuel performance and radionuclide release modeling during normal operation and accidents for safety analyses No. JUEL-2721[R]. Germany: Forschungszentrum Jülich GmbH, 1993.
[12] AMIAN W, STOVER D. Diffusion of silver and cesium in silicon-carbide coatings of fuel particles for hightemperature gas-cooled reactors[J]. Nucl Technol, 1983, 61: 475-486.
[13] FRIEDLAND E, MALHERBE J B, VANDERBERG N G, et al. Study of silver diffusion in silicon carbide [J]. J Nucl Mater, 2009, 389: 326-331.
[14] MACLEAN H J. Silver transport in CVD silicon carbide [D]. Boston: MIT, 2004.
[15] SHRADER D, KHALIL S, GERCZAK T, et al. Ag diffusion in cubic silicon carbide[J]. J Nucl Mater, 2010, 408: 257-271.
[16] KHALIL S, SWAMINATHAN N, SHRADER D, et al. Diffusion of Ag along 3 grain boundaries in 3C-SiC[J]. Phys Rev B, 2011, 84: 214104.
[17] VOTER A F. Hyperdynamics: Accelerated molecular dynamics of infrequent events[J]. Phys Rev Lett, 1997, 78: 3908-3911.
[18] TERSOFF J. New empirical approach for the structure and energy of covalent systems[J]. Phys Rev B, 1988, 37: 6991-7000.
[19] TERSOFF J. New empirical model for the structural properties of silicon[J]. Phys Rev Lett, 1986, 56: 632-635.
[20] TERSOFF J. Empirical interatomic potential for carbon, with applications to amorphous carbon[J]. Phys Rev Lett, 1988, 61: 2879-2882.
[21] TERSOFF J. Modeling solid-state chemistry: Interatomic potentials for multicomponent systems[J]. Phys Rev B, 1989, 39: 5566-5568.
[22] TERSOFF J. Empirical interatomic potential for silicon with improved elastic properties[J]. Phys Rev B, 1988, 38: 9902-9905.
[23] FOILES S M, BASKES M I, DAW M S. Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys [J]. Phys Rev B, 1986, 33: 7983-7991.
[24] LI X P, CEPERLEY D M, MARTIN R M. Cohesive energy of silicon by the Green's-function monte carlo method[J]. Phys Rev B, 1991, 44: 10929-10932.
[25] KOHAN A F, CEDER G, MORGAN D, et al. First-principles study of native point defects in ZnO[J]. Phys Rev B, 2000, 61: 15019-15027.
[26] MURNAGHAN F D. The compressibility of media under extreme pressures[J]. Proceeding of the National Academy of Sciences of the United States of America, 1944, 30(9): 244-247.
[27] BUTLER K T, VULLUM P E, MUGGERUD A M, et al. Structural and electronic properties of silver/silicon interfaces and implications for solar cell performance [J]. Phys Rev B, 2011, 83(23): 2155-2161.
[28] KRESSE G, FURTHMULLER J. Efficient iterative schemes for ab initio total-energy calculations using a planewave basis set[J]. Phys Rev B, 1996, 54(16): 11169-11186.
[29] BROMMER P, GÄHLER F. Potfit: Effective potentials from ab -initio data [J]. Simul Mater Sci Eng, 2007, 15: 295-304.
[30] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Phys Rev Lett, 1996, 77: 3865-3868.
[31] MARTIN R M. Electronic Structure: Basic Theory and Practical Methods[M]. Cambridge: Cambridge University Press, 2004.
[32] MONKHORST H J, PACK J D. Special points for Brillouin-zone integrations [J]. Phys Rev B, 1976, 13: 5188-5200.
[33] ERHART P, ALBE K. Analytical potential for atomistic simulations of silicon, carbon, and silicon carbide [J]. Phys Rev B, 2005, 71(3): 035211.
[34] MOORE C E. Atomic Energy Levels Volumer[M]. Washington D C: NBS, 1949.
[35] AADERSON O L. The use of ultrasonic measurements under modest pressure to estimate compression at high pressure[J]. J Phys Chem Solids, 1966, 27: 547-565.
[36] DONOHUE J. The structures of the elements[J]. Diamond and Related Materials, 1974, 24(4): 436. DOI: 10.1016/j.diamond.2011.01.035.
[37] YIN M T, COHEN M L. Microscopic theory of the phase transformation and lattice dynamics of Si [J]. Phys Rev Lett, 1980, 45: 1004-1007.
[38] CAR R, KELLY P J, OSHIYAMA A, et al. Microscopic theory of atomic diffusion mechanisms in silicon [J]. Phys Rev Lett, 1984, 52: 1814-1817.
[39] BARAFF G A, SCHLUTER M. Migration of interstitials in silicon [J]. Phys Rev B, 1984, 30: 3460-3469.
[40] BREWER L. Lawrence berkeley laboratory report No. LB-3720[R]. California: Lawrence Berkeley Laboratory, 1977.
[41] MCSKIMIN H J, ANDREATCH P. The elastic stiffness moduli of diamond[J]. J Appl Phys, 1972, 43: 985-987.
[42] BERNHOLC J, ANTONELLI A, DELSOLE T M, et al. Mechanism of self-diffusion in diamond[J]. Phys Rev Lett, 1988, 61: 2689-2692.
[43] LEE D H, JOANNOPOULOS J D. Simple scheme for deriving atomic force constants: Application to SiC[J]. Phys Rev Lett, 1982, 48: 1846-1849.
文章导航

/