生命科学

Cd2+Cypridopsis vidua(介形纲)肠壁结构的毒性效应

  • 陈仕梅 ,
  • 李丹妮 ,
  • 丁晴晴 ,
  • 禹娜
展开
  • 1. 华东师范大学 生命科学学院, 上海 200240;
    2.华东师范大学 教师教育学院, 上海 200062
陈仕梅,女,硕士研究生,研究方向动物毒理学.

收稿日期: 2016-09-12

  网络出版日期: 2017-07-20

基金资助

公益性行业(农业)科研专项项目(201203065-04);国家自然科学基金(31672263,41372365)

Toxic effects of Cd2+ on the intestinal structure of Cypridopsis vidua (Ostracoda)

  • CHEN Shi-mei ,
  • Li Dan-ni ,
  • Ding Qing-qing ,
  • YU Na
Expand
  • 1. School of Life Science, East China Normal University, Shanghai 200240, China;
    2. College of Teacher Education, East China Normal University, Shanghai 200062, China

Received date: 2016-09-12

  Online published: 2017-07-20

摘要

Cypridopsis vidua是少数能在重污染水体中生存的介形类之一.本文采用急性毒性实验方法,研究了Cd2+对介形类C.vidua及其肠壁结构的影响,结果表明,24、48、72和96h时Cd2+C.vidua的半致死浓度(LC50)分别为5.00、2.01、0.46和0.14 mg/L,安全浓度为0.014 mg/L.在急性毒性试验的基础上,于安全浓度上下分别设置了两个Cd2+实验浓度对介形类进行攻毒研究,目的是进一步探讨在安全浓度附近,Cd2+C.vidua肠壁细胞的损伤情况,实验持续7 d.显微结果显示,在安全浓度以下时,C.vidua的胃肠道结构基本没有受到损伤,但超过安全浓度后,C.vidua的胃肠道结构损伤程度于96h以内表现出了一定的时间和剂量效应,但至第7天时部分幸存下来的C.vidua其受损胃肠道结构出现一定程度的恢复,但已无法恢复到最初的状态了;亚显微切片显示,肠壁细胞的膜结构、胞质、胞器等均有不同程度的损伤,且随镉离子浓度的升高损伤明显加剧,其中细胞的膜结构损伤尤为严重.

本文引用格式

陈仕梅 , 李丹妮 , 丁晴晴 , 禹娜 . Cd2+Cypridopsis vidua(介形纲)肠壁结构的毒性效应[J]. 华东师范大学学报(自然科学版), 2017 , (4) : 168 -179 . DOI: 10.3969/j.issn.1000-5641.2017.04.015

Abstract

Cypridopsis vidua is one of the few ostracods which can surrive from heavy pollution water. The toxic effects of Cd2+ on C. vidua and its intestinal ultrastructure were examined using a static renewal system. The LC50 values for cadmium in C. vidua were 5.00, 2.01, 0.46 and 0.14 mg/L at 24, 48, 72 and 96 h exposure respectively, and the safe concentration of Cd2+ for long-term C. vidua survival was less than 0.014 mg/L. To observe the structure changes of its intestinal, four Cd2+ concentrations were set up, and two of them were below the safe concentration of Cd2+ (0.001 and 0.004 mg/L) and the other concentrations were above its safe concentration (0.016 and 0.064 mg/L). The experiment lasted for 7 days. When microstructure of C. vidua was observed, the gastrointestinal orga- nization was not damaged below the safe concentration; while the degree of injury showed a certain amount of time and dose effects in 24-72 hours above the safe concentration, and some structures among those surviving animals were slightly recovered in 7 days under same concentration. Sub-microscopic analysis of intestinal cells of C. vidua in two concentrations (0.004 and 0.064 mg/L) groups showed, different degrees of structure damage were found in the cell membrane, cytoplasm and organelles, which worsened with increasing Cd2+ con- centrations. Among these cellular structures, the damage to the membrane system of the cell was especially serious.

参考文献

[1] STANKOVIC S, JOVIC M, STANKOVIC A R, et al. Heavy metals in seafood mussels. Risks for human health.[M]//LICHTFOUSE E, SCHWARZBAUER J, ROBERT D, Environmental chemistry for a sustainable world: Volume 1-Nanotechnology and Health Risk. Netherlands: Springer, 2012: 311-373.
[2] YANG J, LEWANDROWSKI K B. Trace elements, vitamins, and nutrition [M]//MCCLATCHEY K D. Clinical Laboratory Medicine. 2nd ed. Philadelphia: Lippincott Williams and Wilkins, 2002: 439-462.
[3] GO Y M, ROEDE J R, ORR M, et al. Integrated redox proteomics and metabolomics of mitochondria to identify mechanisms of Cd Toxicity [J]. Toxicological Sciences, 2014, 139(1): 59-73.
[4] ZHOU Q, KONG F, ZHU L. Ecotoxicology [M]. Beijing: Science Press, 2004: 56-58.
[5] OMER S A, ELOBEID M A, FOUAD D, et al. Cadmium bioaccumulation and toxicity in tilapia fish (Oreochromis niloticus) [J]. Journal of Animal and Veterinary Advances, 2012, 11(10): 1601-1606.
[6] IARC (International Agency for Research on Cancer). Beryllium, Cadmium, Mercury, and Exposures in the Glass Manufacturing Industry [J]. IARC monographs on the evaluation of carcinogenic risks to humans, 1993, 58: 41-117.
[7] LIU G, SHENG Z, WANG Y, et al. Glutathione peroxidase 1 expression, malondialdehyde levels and histological alterations in the liver of Acrossocheilus fasciatus exposed to cadmium chloride [J]. Gene, 2016, 578(2): 210-218.
[8] DEFUR P L. Use and role of invertebrate models in endocrine disruptor research and testing [J]. National Research Council, Institute of Laboratory Animal Resources, 2004, 45(4): 484-493.
[9] MIRTO S, DANOVARO R. Meiofaunal colonisation on artificial substrates: A tool for biomonitoring the environmental quality on coastal marine systems [J]. Marine Pollution Bulletin, 2004, 48(9-10): 919-926.
[10] SUTHERLAND T F, LEVINGS C D, PETERSEN S A, et al. The use of meiofauna as an indicator of benthic organic enrichment associated with salmonid aquaculture [J]. Marine Pollution Bulletin, 2007, 54(8): 1249-1261.
[11] ZHANG Q, HU G. Applications of meiobenthos in marine ecological monitoring [J]. Marine Information, 2008, 4: 28-29.
[12] RUIZ F, GONZÁLEZ-REGALADO M L, BORREGO J, et al. Ostracoda and Foraminifera as short–term tracers of environmental changes in very polluted areas: The Odiel Estuary (SWSpain) [J]. Environment Pollution, 2004, 129(1): 49-61.
[13] YU N, CHEN S, LI E, et al. Tolerance of Physocypria kraepelini (Crustacean, Ostracoda) to water–borne ammonia, phosphate and pH value [J]. Journal of Environmet Science, 2009, 21: 1575-1580.
[14] YU N, CHEN L, ZHAO Q. CCA of ostracod distribution and environmental factors in the Taihu Lake [J]. Acta Micropalaeontologica Sinica, 2007, 24: 53-56.
[15] RUIZ F, ABAD M, BODERGAT A M, et al. Freshwater ostracods as environmental tracers [J]. International Journal of Environmental Science and Technology, 2013(10): 1115-1128.
[16] KÜLKÖYLÜOĞLU O, SARI N, DÜGEL M, et al. Effects of limnoecological changes on the Ostracoda (Crustacea) community in a shallow lake (Lake Çubuk, Turkey) [J]. Limnologica-Ecology and Management of Inland Waters, 2014, 46: 99-108.
[17] WEI C, YU N, ZHAO Q, et al. Canonical correspondence analysis of modern Ostracoda and environmental factors in the Dishui Lake, Shanghai [J]. Acta Micropalaeontological Sinica, 2015, 32(2): 115-124.
[18] KÜLKÖYLÜOĞLU O. Ecology of freshwater Ostracoda (Crustacea) from lakes and reservoirs in Bolu, Turkey[J]. Journal of Freshwater Eecology, 2003, 18(3): 343-347.
[19] PIERI V, VANDEKERKHOVE J, GOI D. Ostracoda (Crustacea) as indicators for surface water quality: A case study from the Ledra River Basin (NE Italy) [J]. Hydrobiologia, 2012, 688: 25-35.
[20] KÜLKÖYLÜOĞLU O, SARI N. Ecological characteristics of the freshwater Ostracoda in Bolu Region (Turkey)[J]. Hydrobiologia, 2012, 688: 37-46.
[21] LORENSCHAT J, PÉREZ L, CORREA-METRIO A, et al. Diversity and spatial distribution of extant freshwater ostracodes (Crustacea) in ancient Lake Ohrid (Macedonia /Albania) [J]. Diversity, 2014, 6(3): 524-550.
[22] SCHNEIDER A, WETTERICH S, SCHIRRMEISTER L, et al. Freshwater ostracods (Crustacea) and environmental variability of polygon ponds in the tundra of the Indigirka Lowland, north-east Siberia [J]. Polar Research, 2016, 35. DOI: 10.3402/polar.v35.25225.
[23] KHANGAROT BS, RAY PK. Sensitivity of midge larvae of Chironomus tentans Fabricius (Diptera: Chironomidae) to heavy metals [J]. Bulletin of Environment Contamination and Toxicololgy, 1989, 42(3): 325-330.
[24] BERGIN F, KUCUKSEZGIN F, ULUTURHAN E, et al. The response of benthic Foraminifera and Ostracoda to heavy metal pollution in Gulf of Izmir (Eastern Aegean Sea) [J]. Estuarine, Coastal and Shelf Science, 2006, 66(3-4): 368-386.
[25] RATHORE RS. Studies on the use of some freshwater invertebrates as sensitive test models for the assessment of toxicity of environmental pollutants [D]. Lucknow: University of Lucknow, 2001: 1-196.
[26] BELGIS Z C, PERSOONE G, BLAISE C. Cyst–based toxicity tests X V I-sensitivity comparision of the solid phase Heterocypris incongruens microbiotest with the Hyalella azteca and Chironomus riparius contact assays on freshwater sediments from Peninsula Harbour (Ontario, Canada) [J]. Chemosphere, 2003, 52(1): 95-101.
[27] SÁNCHEZ-BAYO F. From simple toxicological models to prediction of toxic effects in time [J]. Ecotoxicology, 2009, 18: 343-354.
[28] BAK M, SZLAUER-LUKASZEWSKA A. Bioindicative potential of diatoms and ostracods in the Odra mouth environment quality assessment [J]. Nova Hedwigia, Beiheft, 2012, 141(3): 463-484.
[29] KHANGAROT BS, RAY PK. Response of a freshwater ostracod (Cypris subglobosa Sowerby) exposed to Copper at different pH levels [J]. Acta Hydrochimica et Hydrobiologica, 1987, 15(6): 553-558.
[30] CHEN S, YU N, ZHOU Y, et al. Acute toxicity experiment of Cd2+, Zn2+ and Cu2+ in Physocypria kraepelini (Ostracoda) [J]. Acta Micropalaeontologica Sinica, 2010, 27(2): 118-124.
[31] DU N. Crustacean [M]. Beijing: Science and Technology Press, 1993: 137-158.
[32] LIM R P, WONG M C. The effects of pesticides on the population dynamics and production of Stenocypris major Baird (Ostracoda) in ricefields [J]. Archiv für Hydrobiologie, 1986, 106: 421-427.
[33] KISS A. Limnological investigations of small water bodies in the Pilis Biosphere Reserve, Hungary. Part II. Köegyi-tó and Unkás-tócsa [J]. Opuscula Zoologica (Budapest), 2001, 33: 67-74.
[34] SHORNIKOV E I, TREBUKHOVA Y A. Ostracods of brackish and fresh waters of southwestern coast of Peter the Great Bay [M]//KASYANOV V L, VASCHENKO M A, PITRUK D L, The state of environment and biota of the southwestern part of Peter the Great Bay and the Tumen River mouth. Vladivostok: Dalnauka, 2001: 56-84.
[35] KÜLKÖYLÜOĞLU O. On the usage of ostracods (Crustacea) as bioindicator species in different aquatic habitats in the Bolu region, Turkey [J]. Ecological Indicators, 2004, 4(2): 139-147.
[36] KÜLKÖYLÜOĞLU O. Ecology and phenology of freshwater ostracods in Lake Gölköy (Bolu, Turkey) [J]. Aquatic Ecology, 2005, 39(3): 295-304.
[37] KÜLKÖYLÜOĞLU O, DÜGEL M, KILIÇ M. Ecological requirements of Ostracoda (Crustacea) in a heavily polluted shallow lake, Lake Yeniçağa (Bolu, Turkey) [J]. Hydrobiologia, 2007, 585(1): 119-133.
[38] ROCA J R, BALTANAS A, UIBLEIN F. Adaptive responses in Cypridopsis vidua (Crustacea: Ostracoda) to food and shelter offered by a macrophyte (Chara fragilis) [J]. Hydrobiologia, 1993, 262(2): 127-131.
[39] CYWINSKA A, CRUMP D, LEAN D. Influence of UV radiation on four freshwater invertebrates [J]. Photochemistry and Photobiology, 2000, 72(5): 652-659.
[40] CYWINSKA A, HEBERT P D N. Origins of clonal diversity in the hypervariable asexual ostracode Cypridopsis vidua [J]. Journal of Evolutionary Biology, 2002, 15(1): 134-145.
[41] HUNT G, PARK L E, LABARBERA M. A novel crustacean swimming stroke: coordinated four–paddled locomotion in the cypridoidean ostracode Cypridopsis vidua (Müller) [J]. Biological Bulletin, 2007, 212(1): 267-273.
[42] ARNAUD J, BRUNET M, MAZZA J. Studies on the midgut of Centropages typicus (Copepod, Calanoida). Structural and Ultrastructural Data [J]. Cell and Tissue Research, 1978, 187(2): 333-353.
[43] REYNOLDS E S. The use of lead citrate at high pH as an electron opaque stain in electron microscopy [J]. Journal of Cell Biology, 1963, 17: 208-212.
[44] HUI X. Environmental Toxicology [M]. Beijing: Chemical Industry Publishing House, 2003, 266-276.
[45] REISH D L, OSHIDA P S. Manual of methods in aquatic environment research, part 10: short–term static bioassays [J]. FAO Fisheries Technical Paper, 1987, 247: 1-62.
[46] SPRAGUE J B. Measurement of pollutant toxicity to fish-III: Sublethal effects and “safe” concentrations [J]. Water Research, 1971, 5(6): 245-266.
[47] BROOKS A, WHITE R M, PATON D C. Effects of heavy metals on the survival of Diacypris compacta (Herbst) (Ostracoda) from the Coorong, South Australia [J]. International Journal of Salt Lake Research, 1995, 4(2): 133-163.
[48] VARDIA H K, RAO P S, DURVE V S. Effect of copper, cadmium and zinc on fish-food organisms, Daphnia lumholtzi and Cypris subglobosa [J]. Proceedings: Animal Sciences, 1988, 97(2): 175-180.
[49] SHUHAIMI-OTHMAN M, NADZIFAH Y, NUR-AMALINA R et al. Toxicity of metals to a freshwater ostracod: Stenocypris major [J]. Journal of Toxicology, 2011, (3): 1-8.
[50] YILMAZ F, KÜLKÖYLÜOĞLU O. Tolerance, optimum ranges, and ecological requirements of freshwater Ostracoda (Crustacea) in Lake Aladağ (Bolu, Turkey) [J]. Ecological Research, 2006, 21(2): 165-173.
[51] SAIPAN P, TENGJAROENKUL B, PRAHKARNKAEO K. Accumulation of Arsenic and Cadmium in foods of animal origin collected from the local markets in northeastern region Thailand [J]. International Journal of Animal & Veterinary Advances, 2014, 6(4): 130-134.
[52] MENKE A, MUNTNER P, SILBERGELD E K, et al. Cadmium levels in urine and mortality among U.S. adults[J]. Environmental Health Perspectives, 2009, 117(2): 190-196.
[53] BERNHOFT R A. Cadmium Toxicity and Treatment [J]. The Scientific World Journal, 2013(7): 66-67.
[54] TAO S, LIANG T, CAO J, et al. Synergistic effect of copper and lead uptake by fish [J]. Ecotoxicology and Environmental Safety, 1999, 44(2): 190-195.
[55] ZHOU X, ZHU G, SUN J, et al. Toxicity of copper, zinc, lead, cadmium to tissue’s cellular DNA of the fish (Carassius auratus) [J]. Acta Agriculture Nucleatae Sinica, 2001, 15(3): 167-173.
[56] ZALUPS R K, AHMAD S. Molecular handling of cadmium in transporting epithelia [J]. Toxicology and Applied Pharmacology, 2003, 186(3): 163-188.
[57] LOEBUS J, LEITENMAIER B, MEISSNER D, et al. The major function of a metallothionein from the aquatic fungus Heliscus lugdunensis in cadmium detoxification [J]. Journal of Inorganic Biochemistry, 2013, 127: 253-260.
[58] SHUKLA G S, HUSAIN T, SRIVASTAVA R S, et al. Glutathione peroxidase and catalase in livers, kidney, testis and brain regions of rats following cadmium exposure and subsequent withdrawal [J]. Industrial Health, 1989, 27(2): 59-69.
[59] LIU R, LIU Y. Study on relationship between lipid perxidation and inviability of isolated rat hepatocytes caused by Cadmium [J]. China Environmental Science, 1990, 10(3): 187-191.
[60] VENUGOPAL N, ROMESH T R S L. Effects of cadmium on antioxidant enzyme activities and lipid pemxidation in freshwater field crab barytelphusa guerlni [J]. Bulletin of Environment Contamination Toxicology, 1997, 59: 132-138.
[61] SOEGIANTO A, CHAMANTIER-DAURES M, TRILLES J P, et al. Impact of cadmium on the structure of gills and epipodites of the shrimp Penaeus japonicas (Crustacea: Decapoda) [J]. Aquatic Living Resources, 1999, 12(1): 57-70.
[62] LIU X, ZHOU Z, CHEN L. Effect of Cadmium on antioxidant enzyme activities of the juvenile Eniocheir sinensis[J]. Marine Sciences, 2003, 27(8): 59-63.
[63] LEE S M, KIM H L, LEE S, et al. Toxicogenomic and signaling pathway analysis of low-dose exposure to cadmium chloride in rat liver [J]. Molecular & Cellular Toxicology, 2013, 9(4): 407-413.
[64] YANG Y, JIA X. Joint toxicity of Cu2+, Zn2+, and Cd2+ to tadpole of Bufo bufo gargarizans [J]. Chinese Journal of Applied and Environmental Biology, 2006, 12(3): 356-359.
[65] GOBE G, CRANE D. Mitochondria, reactive oxygen species and cadmium toxicity in the kidney [J]. Toxicology Letters, 2010, 198(1): 49-55.
[66] LIU D, YAN B, YANG J, et al. Mitochondrial pathway of apoptosis in the hepatopancreas of the freshwater crab Sinopotamon yangtsekiense exposed to cadmium [J]. Aquatic Toxicology, 2011, 105(3-4): 394-402.
[67] CASALINO E, CALZARETTI G, SBLANO C, et al. Molecular inhibitory mechanisms of antioxidant enzymes in rat liver and kidney by cadmium [J]. Toxicology, 2002, 179(1-2): 37-50.
[68] LIU D H, WANG M, ZOU J H, et al. Uptake and accumulation of cadmium and some nutrientions by roots and shoots of maize (Zea mays L.) [J]. Pakistan Journal of Botany, 2006, 38(3): 701-709.
[69] WANG L, SUN H. Effect of cadmium on ultrastructure of myocardial cell of freshwater crab, Sinopotamon yangtsekiense [J]. Acta Hydrobiogica Sinica, 2002, 26(1): 8-13.
文章导航

/