运通过有效融合Shamir(t,n)门限密钥共享方案和Laplace噪音干扰算法提出了一种面向智能电表隐私保护的电量请求方案,实现电力公司分时电价计费的同时保护用户隐私.定量分析了安全性并确定了最优门限值t的选择、测试分析了时间效率、验证分析了Laplace噪音干扰的ε-差分隐私保护效果并作了方案的可行性比较.实验结果表明,提出的方案具有有效性和可行性.
A privacy-preserving power request scheme was proposed. The proposed scheme combined Shamir (t,n) threshold secret sharing scheme with Laplace noise perturbation algorithm effectively to achieve paying TOU billing as well as protecting user privacy. Experiments were performed from four aspects:analyzing the security quantitatively and determining the optimal threshold t, giving the experiment on efficiency test, verifying the ε-differential privacy by introducing the Laplace noise perturbation and conducting the scheme feasibility comparison. Experimental results show that the proposed scheme is effective and feasible.
[1] YUC M, CHEN C Y, KUO S Y, et al. Privacy-preserving power request in smart grid networks[J]. IEEE Systems Journal, 2014, 8(2):441-449.
[2] LI F J, LUO B, LIU P. Secure information aggregation for smart grids using homomorphic encryption[C]//Proc of the SmartGridComm. Gaithersburg. MD:IEEE, 2010:327-332.
[3] GENTRY C. A fully homomorphic encryption scheme[D]. Palo Alto:Stanford University, 2009.
[4] VARODAYAN D, KHISTI A. Smart meter privacy using a rechargeable battery:Minimizing the rate of information leakage[C]//Proc of the Acoustics, Speech, and Signal Processing. Prague:IEEE, 2011:1932-1935.
[5] KALOGRIDIS G, EFTHYMIOU C, DENIC S, et al. Privacy for smart meters:towards undetectable appliance load signatures[C]//Proc of the SmartGridComm. Gaithersburg, MD:IEEE, 2010, 4(6):232-237.
[6] CHEUNG J C L, CHIM T W, YIU S M, et al. Credential-based privacy-preserving power request scheme for smart grid network[C]//Proc of the Global Telecommunications Conference. Houston:IEEE, 2011, 5(9):1-5.
[7] EFTHYMIOU C, KALOGRIDIS G. Smart grid privacy via anonymization of smart metering data[C]//Proc of the SmartGridComm. Gaithersburg, MD:IEEE, 2010, 4(6):238-243.
[8] MARKHAM M M, SHENOY P, FU F, et al. Private memoirs of a smart meter[C]//Proc of the Embedded Systems for Energy-Efficient Buildings. Zurich:ACM, 2010.
[9] GOLDWASSER S, MICALI S, RACKOFF C. The knowledge complexity of interactive proof-systems[J]. SIAM Journal of Computing, 1989.
[10] CHIM T W, YIU S M, LUCAS C K, et al. PASS:Privacy-preserving authentication scheme for smart grid network[C]//Proc of the SmartGridComm. Brussels:IEEE, 2011:196-201.
[11] KIM Y S, HEO J. Device authentication protocol for smart grid systems using homomorphic hash[J]. Communications and Networks, 2012, 14(6):606-613.
[12] LEE W B, CHEN T H, SUN W R, et al. An s/key-like one-time password authentication scheme using smart cards for smart meter[C]//Proc of the Advanced Information Networking and Applications Workshops. Victoria:IEEE, 2014:281-286.
[13] LEE S, BONG J, SHIN S, et al. A security mechanism of smart grid ami network through smart device mutual authentication[C]//Proc of the Computer Communications Workshops. Phuket:IEEE, 2014:592-595.
[14] FOUDA M M, FADLULLAH Z M, KATA N, et al. A lightweight message authentication scheme for smart grid communications[J]. IEEE Transactions on Smart Grid, 2011, 2(4):675-685.
[15] FOOUDA M M, FADLULLAH Z M, KATA N, et al. Towards a light-weight message authentication mechanism tailored for smart grid communications[C]//Proc of the Information Networking. Shanghai:IEEE, 2011:1018-1023.
[16] KAKALI C, ASOK D, DAYA G. Mutual authentication protocol using hyperelliptic curve cryptosystem in constrained devices[J]. International Journal of Network Security, 2013, 15(1):9-15.
[17] RIHM A, HEBA A, SALWA H E. New real time multicast authentication protocol[J]. International Journal of Network Security, 2011, 12(1):13-20.
[18] RASTAGI V, NATH S. Differentially private aggregation of distributed time-series with transformation and encryption[C]//Proc of the Management of data. Indiana:ACM, 2010:6-11
[19] SARATHY R, MURALIDHAR K. Evaluating laplace noise addition to satisfy differential privacy for numeric data[J]. Transactions on Data Privacy, 2011, 4(1):1-17.
[20] SHAMIR A. How to share a secret[J]. Communications of the ACM, 1979, 22(11):612-613.
[21] TIAN X X, SHA C F, WANG X L, et al. Privacy preserving query processing on secret share based data storage[C]//Proc of the Database Systems for Advanced Applications. Hong Kong:Springer, 2011:108-122.
[22] RASTOGI V, NATH S. Differentially private aggregation of distributed time-series with transformation and encryption[R]. Tech Rep MSR-TR-2009-186, Microsoft Research, 2009.
[23] LI Q D, ZHOU Y H. Research and application based on A. Shamir's (t, n) threshold secret sharing scheme[C]//Proc of the Computer Science & Education. Melbourne:IEEE, 2012(6):14-17.
[24] DWORK C, MCSHERRY F, NISSIM K, et al. Calibrating noise to sensitivity in private data analysis[C]//Proc of the 3rd Theory of Cryptography Conference. New York:Springer, 2006:265-284.
[25] DWORK C. Differential privacy:A survey of results[C]//Proc of the Theory and Applications of Models of Computation. China:Springer, 2008:1-19.
[26] 田秀霞, 高明, 王晓玲, 等. 数据库服务——安全与隐私保护[J]. 软件学报, 2010, 21(5):991-1006.
[27] CHAUMM D. Blind signatures for untraceable payments[C]//Proc of the Advances in Cryptology. USA:Springer, 1982:199-203.
[28] 张明武, 杨波, 祝胜林. 可信模块隐私保护的自证明签密方案[J]. 北京邮电大学学报, 2009, 32(1):60-64.
[29] LIUY L, JIN Z G. Security enhancement of WAPI access authentication protocol(WAI)[J]. Journal of Harbin Institute of Teehnolo (New Series), 2012, 19(6):42-46.