套牌车行为不仅扰乱公共交通秩序,还危害了真实车主的利益,给社会带来了极大危害,整治套牌车刻不容缓.广泛使用的卡口时间对比法使用统一的速度阈值检测套牌车辆,一旦阈值设置不当,容易造成套牌误判和漏检,导致检测结果准确率低.针对这样的问题,本文提出了一种两阶段的套牌车检测框架.离线部分根据历史卡口摄像头监测数据分时段对各路段建立速度分布,确定不同时段各路段的正常速度阈值;在线部分基于滑动窗口模型,根据正常速度阈值,对各路段实时通行车辆进行持续监测,将高频度出现速度异常的车辆判定为套牌车.最后使用真实卡口监测数据集对所提方法进行有效性验证,实验结果表明该方法能够有效避免噪声数据干扰,从而显著提升了套牌车检测的准确率.
Since vehicles using fake plate violate traffic laws and regulations, infringe the rights of legal license owners and harm social benefits, it is therefore of great urgency to solve this social problem. In current detection methods, unified speed threshold is used to detect fake plate vehicles. Once an inappropriate threshold was set, it would lead to misjudgements and omissions, and thereby results in a low judgement accuracy. To solve this problem, we propose a two-phase fake plate vehicles detection framework. In the offline part, we train a distributed speed model based on sparse traffic trajectory data to calculate time-dependent thresholds for different roads. In the online part, we apply a sliding-window method to monitor whether a car is an outlier. If a car is continually detected as an outlier, it will be judged as a fake, and vice versa. We then use a real dataset to evaluate our method. The results demonstrate negative influences of noise data can be avoided by our method, so the accuracy of fake plate vehicles detection can be improved significantly.
[1] 唐晓东. 套牌机动车辆检测方法分析[J]. 中国人民公安大学学报(自然科学版), 2013, 19(2):76-79.
[2] 吴俊文, 范大伟. 一种汽车牌照防套牌装置:中国, 200720000158.4[P]. 2007-12-19.
[3] 杨博. 物联网ZigBee技术在套牌车监管中的应用研究[J]. 制造业自动化, 2012, 34(17):41-43.
[4] 李悦, 刘晨. 基于历史车牌识别数据的套牌车并行检测方法[J]. 计算机应用, 2016, 36(3):864-870.
[5] 周傲英, 杨彬, 金澈清, 等. 基于位置的服务:架构与进展[J]. 计算机学报, 2011, 34(7):1155-1171.
[6] LIU H P, JIN C Q, ZHOU A Y. Popular route planning with travel cost estimation[C]//Proceedings, Part Ⅱ, of the 21st International Conference on Database Systems for Advanced Applications-Volume 9643. New York:Springer-Verlag Inc, 2016:403-418.
[7] WU C H, HO J M, LEE D T. Travel-time prediction with support vector regression[J]. IEEE Transactions on Intelligent Transportation Systems, 2004, 5(4):276-281.
[8] CHEN Z B, SHEN H T, ZHOU X F. Discovering popular routes from trajectories[C]//2011 IEEE 27th International Conference on Data Engineering (ICDE). 2011:900-911.
[9] DENG C Y, XUE L F, LI W Q, et al. The real-time monitoring system for inspecting car based on RFID, GPS and GIS[C]//2010 International Conference on Environmental Science and Information Application Technology. IEEE, 2010:772-775.
[10] IQBAL U, ZAMIR S W, SHAHID M H, et al. Image based vehicle type identification[C]//2010 International Conference on Information and Emerging Technologies. IEEE, 2010, Page(s):1-5. DOI:10.1109/ICIET.2010. 5625675.
[11] 卢晓春, 周欣, 蒋欣荣, 等. 基于网格化监控的套牌车检测系统[J]. 计算机应用, 2009, 29(10):2847-2848.
[12] 毛嘉莉, 金澈清, 章志刚, 等. 轨迹大数据异常检测:研究进展及系统框架[J]. 软件学报, 2017, 28(1):17-34.
[13] LEI P R. A framework for anomaly detection in maritime trajectory behavior[J]. Knowledge and Information Systems, 2016, 47(1):189-214.
[14] ZHU J, JIANG W, LIU A, et al. Time-dependent popular routes based trajectory outlier detection[C]//International Conference on Web Information Systems Engineering-WISE 2015. Berlin:Springer International Publishing, 2015:16-30.
[15] PAN B, ZHENG Y U, WILKIE D, et al. Crowd sensing of traffic anomalies based on human mobility and social media[C]//Proceedings of the 21st ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems. 2013:344-353.