物理学与电子学

二维过渡金属硫化物中Rashba自旋轨道耦合效应的电场调控研究

  • 姚群芳 ,
  • 蔡佳 ,
  • 龚士静
展开
  • 华东师范大学 极化材料与器件教育部重点实验室, 上海 200241
姚群芳,女,硕士研究生,研究方向为自旋电子学.E-mail:qfyao1175@163.com.

收稿日期: 2017-02-21

  网络出版日期: 2018-03-22

基金资助

上海市自然科学基金(14ZR1412700);国家自然科学基金(61774059)

Electrical manipulation of Rashba spin-orbit coupling in the two-dimensional transition metal dichalcogenide

  • YAO Qun-fang ,
  • CAI Jia ,
  • GONG Shi-jing
Expand
  • Key Laboratory of Polar Materials and Devices, Ministry of Education, East China Normal University, Shanghai 200241, China

Received date: 2017-02-21

  Online published: 2018-03-22

摘要

本文采用基于密度泛函理论的第一性原理计算方法,对6种二维过渡金属硫化物MX2M=Mo,W;X=S,Se,Te)中的Rashba自旋轨道耦合效应进行了系统研究.对6种MX2材料施加垂直方向电场,发现阴离子X对于电场诱导的Rashba自旋轨道耦合效应起主要作用:X原子序数越大,电场诱导的Rashba劈裂也越大;阳离子M被阴离子X覆盖,对电场诱导的Rashba自旋劈裂影响较弱.因此,6种MX2单层的Rashba自旋劈裂大小依次为:WTe2 > MoTe2 > WSe2 > MoSe2 > WS2 > MoS2.施加电场后,从布里渊区中心Γ点到布里渊区边界K/K'点,自旋方向二维平面内转向垂直方向,并且随着电场的增加,面内自旋成分逐渐增加.

本文引用格式

姚群芳 , 蔡佳 , 龚士静 . 二维过渡金属硫化物中Rashba自旋轨道耦合效应的电场调控研究[J]. 华东师范大学学报(自然科学版), 2018 , 2018(2) : 101 -108 . DOI: 10.3969/j.issn.1000-5641.2018.02.010

Abstract

Using the first-principles density functional theory calculations, we investigate the Rashba spin-orbit coupling of the transition metal dichalcogenide (TMD) monolayers MX2(M=Mo, W; X=S, Se, Te) induced by the external electric field. It is found that the anions X play an important role on the Rashba spin-orbit coupling effect. With the increase of the atomic number of X, Rashba spin-orbit splitting around the Γ point increases more distinctively, and the external electric field can hardly influence the cations because of the coverage by the anions. Thus the strength of the Rashba spin-orbit coupling follows the sequence:WTe2 > MoTe2 > WSe2 > MoSe2 > WS2 > MoS2. Furthermore, the distribution of the spin polarization along the high symmetry line Γ-K/K' turns from the vertical direction to the two-dimensional plane under the external electric fields, and the in-plane spin polarization distribution rises with the increase of the external electric field.

参考文献

[1] WINKLER R. Spin-Orbit Coupling Effects in Two-Dimensional Electron and Hole Systems[M]. Berlin:Springer, 2003.
[2] DATTA S, DAS B. Electronic analog of the electro-optic modulator[J]. Appl Phys Lett, 1990, 56(7):665-667.
[3] MANCHON A, KOO H C, NITTA J, et al. New perspectives for Rashba spin-orbit coupling[J]. Nat Mater, 2015, 14(9):871-882.
[4] CHUANG P, HO S-C, SMITH L W, et al. All-electric all-semiconductor spin field-effect transistors[J]. Nat Nanotechnol, 2015, 10(1):35-39.
[5] NITTA J, AKAZAKI T, TAKAYANAGI H, et al. Gate control of spin-orbit interaction in an inverted In0.53Ga0.47As/In0.52Al0.48As heterostructure[J]. Phys Rev Lett, 1997, 78(7):1335-1338.
[6] STEIN D, KLITZING K V, WEIMANN G. Electron spin resonance on GaAs-AlxGa1-xAs hetero structures[J]. Phys Rev Lett, 1983, 51(2):130-133.
[7] LASHELL S, MCDOUGALL B A, JENSEN E. Spin splitting of an Au(111) surface state band observed with angle resolved photoelectron spectroscopy[J]. Phys Rev Lett, 1996, 77(16):3419-3422.
[8] KOROTEEV Y M, BIHLMAYER G, GAYONE J E, et al. Strong spin-orbit splitting on Bi surfaces[J]. Phys Rev Lett, 2004, 93(4):046403.
[9] KRUPIN O, BIHLMAYER G, STARKE K, et al. Rashba effect at magnetic metal surfaces[J]. Phys Rev B, 2005, 71(20):201403.
[10] AST C R, HENK J, ERNST A, et al. Giant spin splitting through surface alloying[J]. Phys Rev Lett, 2007, 98(18):186807.
[11] SAKAMOTO K, KAKUTA H, SUGAWARA K, et al. Peculiar Rashba splitting originating from the twodimensional symmetry of the surface[J]. Phys Rev Lett, 2009, 103(15):156801.
[12] GIERZ I, SUZUKI T, FRANTZESKAKIS E, et al. Silicon surface with giant spin splitting[J]. Phys Rev Lett, 2009, 103(4):046803.
[13] ISHIZAKA K, BAHRAMY M S, MURAKAWA H, et al. Giant Rashba-type spin splitting in bulk BiTeI[J]. Nat Mater, 2011, 10(7):521-526.
[14] BAHRAMY M S, ARITA R, NAGAOSA N. Origin of giant bulk Rashba splitting:Application to BiTeI[J]. Phys Rev B, 2011, 84(4):041202.
[15] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696):666-669.
[16] NAIR R R, BLAKE P, GRIGORENKO A N, et al. Fine structure constant defines visual transparency of graphene[J]. Science, 2008, 320(5881):1308-1308.
[17] PACIL D, MEYER J C, GIRIT Ç O et al. The two-dimensional phase of boron nitride:Few-atö mic-layer sheets and suspended membranes[J]. Appl Phys Lett, 2008, 92(13):133107.
[18] VOGT P, DE PADOVA P, QUARESIMA C, et al. Silicene:Compelling experimental evidence for graphenelike two-dimensional silicon[J]. Phys Rev Lett, 2012, 108(15):155501.
[19] WANG Q H, KALANTAR-ZADEH K, KIS A, et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides[J]. Nat Nanotechnol, 2012, 7(11):699-712.
[20] KUC A, ZIBOUCHE N, HEINE T. Influence of quantum confinement on the electronic structure of the transition metal sulfide TS2[J]. Phys Rev B, 2011, 83(24):245213.
[21] CONLEY H J, WANG B, ZIEGLER J I, et al. Bandgap Engineering of Strained Monolayer and Bilayer MoS2[J]. Nano Lett, 2013, 13(8):3626-3630.
[22] MAK K F, SHAN J. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides[J]. Nat Photonics, 2016, 10(4):216-226.
[23] RADISAVLJEVIC B, RADENOVIC A, BRIVIO J, et al. Single-layer MoS2 transistors[J]. Nat Nanotechnol, 2011, 6(3):147-150.
[24] EDA G, MAIER S A. Two-dimensional crystals:Managing light for optoelectronics[J]. ACS Nano, 2013, 7(7):5660-5665.
[25] XIAO D, LIU G B, FENG W X, et al. Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides[J]. Phys Rev Lett, 2012, 108(19):196802.
[26] ZENG H L, DAI J F, YAO W, et al. Valley polarization in MoS2 monolayers by optical pumping[J]. Nat Nanotechnol, 2012, 7:490-493.
[27] CHENG Y C, ZHU Z Y, TAHIR M, et al. Spin-orbit-induced spin splittings in polar transition metal dichalcogenide monolayers[J]. Europhys Lett, 2013, 102(5):57001.
[28] KRESSE G, JOUBERT D. From utrasoft pseudopotentials to the projector augmentedwave method[J]. Phys Rev B, 1999, 59(3):1758-1775.
[29] GONG S J, CAI J, YAO Q F, et al. Orbital control of Rashba spin orbit coupling in noble metal surfaces[J]. J Appl Phys, 2016, 119(12):125310.
[30] GONG S J, DUAN C G, ZHU Y, et al. Controlling Rashba spin splitting in Au (111) surface states through electric field[J]. Phys Rev B, 2013, 87(3):035403.
[31] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Phys Rev Lett, 1996, 77(18):3865-3868.
[32] SANNA S, H LSCHER R, SCHMIDT W G. Temperature dependent LiNbO3(0001):Surface reconstruction and surface charge[J]. Appl Surf Sci, 2014, 301:70-78.
[33] VAN DER ZANDE A M, HUANG P Y, CHENET D A, et al. Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide[J]. Nat Mater, 2013, 12(6):554-561.
[34] MAK K F, LEE C, HONE J, et al. Atomically thin MoS2:A new direct-gap semiconductor[J]. Phys Rev Lett, 2010, 105(13):136805.
文章导航

/