数学

三参数射影平坦芬斯勒度量的构造

  • 刘金梦 ,
  • 宋卫东
展开
  • 安徽师范大学 数学计算机科学学院, 安徽 芜湖 241000
刘金梦,女,硕士研究生,研究方向为微分几何.E-mail:1813278900@qq.com.

收稿日期: 2017-04-24

  网络出版日期: 2018-05-29

基金资助

国家自然科学基金(11371032);安徽省自然科学基金重点项目(KJ2017A795)

The explicit structure of projectively flat Finsler metrics with three parameters

  • LIU Jin-meng ,
  • SONG Wei-dong
Expand
  • School of Mathematics & Computer Science, Anhui Normal University, Wuhu Anhui 241000, China

Received date: 2017-04-24

  Online published: 2018-05-29

摘要

本文主要研究射影平坦芬斯勒度量,构造了一类含三参数的芬斯勒度量,并且得到了该度量是射影平坦的充要条件.另外,还给出了该度量有关旗曲率的表达式.

本文引用格式

刘金梦 , 宋卫东 . 三参数射影平坦芬斯勒度量的构造[J]. 华东师范大学学报(自然科学版), 2018 , 2018(3) : 30 -37 . DOI: 10.3969/j.issn.1000-5641.2018.03.004

Abstract

In this paper, projectively flat Finsler metrics are considered. A class of projectively flat Finsler metrics with three parameters are formed. Moreover, the sufficient and necessary conditions for the measurement to be considered projectively flat was obtained. In particular, the flag curvature expression of projectively flat Finsler metrics are presented.

参考文献

[1] BERWALD L. Über die n-dimensionalen Geometrien Konstanter Krummung in denen die Geraen die Kurzesten sind[J]. Math Z, 1929, 30:449-469.
[2] SHEN Z M. Projectively flat Finsler metrics of constant flat curvature[J]. Trans Amer Math Soc, 2003, 355:1713-1728.
[3] MATSUMOTO M. The Berwald connection of Finsler space with an (α,β)-metric[J]. Tensor N S, 1991, 50:18-21.
[4] YU C T, ZHU H M. On a new class of Finsler metric[J]. Differ Geom Appl, 2011, 29(2):244-254.
[5] YU C T. On dually flat general (α,β)-metric[J]. Differ Geom Appl, 2015, 40:111-122.
[6] SONG W D, WANG X S. A new class of Finsler metric with scalar flag curvature[J]. J Math Res Appl, 2012, 32(4):485-492.
[7] YU C T, ZHU H M. Projectively flat general (α,β)-mertrics with constant flag curvature[J]. J Math Anal Appl, 2015, 429:1222-1239.
[8] SHEN Z M, YILDIRIM G C. On a class of projectively flat metrics with constant flat curvature[J]. Canad J Math, 2008, 60(2):443-456.
[9] HAMAL G. Über die Geometrieen in denen die Geraden die Kvrzesten sind[J]. Math Ann, 1903, 57:231-264.
[10] 莫小欢. 黎曼-芬斯勒几何基础[M]. 北京:北京大学出版社, 2007.
[11] 沈一兵. 现代芬斯勒几何初步[M]. 北京:高等教育出版社, 2012.
文章导航

/