物理学与电子学

磁偶极作用对铁基纳米晶条带LDGMI效应的影响

  • 苏亚攀 ,
  • 潘海林 ,
  • 赵振杰 ,
  • 袁萌平
展开
  • 1. 华东师范大学 物理与材料科学学院, 上海 200062;
    2. 国家电网南阳供电公司, 河南 南阳 473000
苏亚攀,男,硕士研究生,研究方向为磁性材料.E-mail:ypsu_xc@163.com.

收稿日期: 2017-04-20

  网络出版日期: 2018-05-29

基金资助

国家自然科学基金(11574084,51572086)

Influence of dipolar magnetic interaction on the LDGMI effect of Fe-based nanocrystalline ribbons

  • SU Ya-pan ,
  • PAN Hai-lin ,
  • ZHAO Zhen-jie ,
  • YUAN Meng-ping
Expand
  • 1. School of Physics and Materials Science, East China Normal University, Shanghai 200062, China;
    2. State Grid Nanyang Power Supply Company, Nanyang Henan 473000, China

Received date: 2017-04-20

  Online published: 2018-05-29

摘要

研究了多片Fe73.5Cu1Nb3Si13.5B9纳米晶条带的磁滞回线、纵向巨磁阻抗(Longitudinal Driven Giant Magneto-Impedance,LDGMI)效应及阻抗相位角的变化规律.研究发现,样品各向异性场随纳米晶条带片数线性增加,LDGMI曲线的"平台"宽度也线性展宽,这是相邻纳米晶条带的磁偶极相互作用导致的.同时,发现驱动场大小、频率对样品LDGMI曲线的"平台"宽度有调制作用,其肩宽场随驱动场频率的增加而增大以及随驱动场增强而减小.因此,本工作对多磁芯LDGMI器件的研制具有重要参考价值.

本文引用格式

苏亚攀 , 潘海林 , 赵振杰 , 袁萌平 . 磁偶极作用对铁基纳米晶条带LDGMI效应的影响[J]. 华东师范大学学报(自然科学版), 2018 , 2018(3) : 129 -135,156 . DOI: 10.3969/j.issn.1000-5641.2018.03.014

Abstract

In this paper, the hysteresis loops, LDGMI (longitudinal driven giant magnetoimpedance) effect, and impedance phase variations of Fe73.5Cu1Nb3Si13.5B9 nanocrystalline ribbons are investigated. The results show that the anisotropy field and the platform width of the LDGMI curves increase linearly with the number of nanocrystalline ribbons. This stems from the dipole-dipole interactions between the ribbons. Simultaneously, the "platform" width was modulated by the frequency and intensity of the driven field, the broad field amplified with the frequency of the driven field increasing, and gradually decreased with the intensity of driven field increasing. Hence, the work has important reference value for the development of LDGMI devices with multiple cores.

参考文献

[1] TAN K J, TAKASHI K, KIYOSHI Y, et al. Detection of high frequency magnetic fields by a GMI probe[J]. IEEE Transaction on Magnetics, 2006, 42(10):3329-3331.
[2] BLANC-BEGUIN F, NABILY S, GIERALTOWSKI J, et al. Cytotoxicity and GMI biosensor detection of maghemite nanoparticles internalized into cells[J]. Journal of Magnetism and Magnetic Materials, 2009, 321(3):192-197.
[3] SOO S Y, PRATAP K, DONG Y K, et al. Magnetic sensor system using asymmetric giant magneto-impedance head[J]. IEEE Transaction on Magnetics, 2009, 45(6):2727-2729.
[4] 杨介信, 杨燮龙, 陈国, 等. 一种新型的纵向驱动巨磁阻抗效应[J]. 科学通报, 1998, 43(10):1051-1053.
[5] ZHAO W, BU X Z, YU G L, et al. Feedback-type giant magneto-impedance sensor based on longitudinal excitation[J]. Journal of Magnetism and Magnetic Materials, 2012, 324(19):3073-3077.
[6] WU Z M, ZHAO Z J, LIU L P, et al. A new frequency-modulation-type MI sensor[J]. IEEE Transaction on Magnetics, 2005, 41(10):3694-3696.
[7] YU G L, BU X Z, XIANG C, et al. Design of a GMI magnetic sensor based on longitudinal excitation[J]. Sensor Actuators A-Physical, 2010, 161(1/2):72-77.
[8] YU G L, BU X Z, YANG B, et al. Differential-type GMI magnetic sensor based on longitudinal excitation[J]. IEEE Sensors Journal, 2011, 11(10):2273-2278.
[9] MOHRI K, PANINA I V, UCHIYAMA T, et al. Sensitive and quick response macro-magnetic sensor utilizing magnetic impedance in Co-rich amorphous wire[J]. IEEE Transaction on Magnetics, 1995, 31(2):1266-1275.
[10] 杨燮龙, 杨介信, 陈国, 等. Fe基软磁纳米微晶磁致电阻抗效应的研究[J]. 科学通报, 1997, 42(3):257-259.
[11] WANG Z C, GONG F F, YANG X L, et al. Longitudinally driven giant magnetoimpedance effect in stress-annealed Fe-based nanocrystalline ribbons[J]. Journal of Applied Physics, 2000, 87(9):4819-4821.
[12] PAL S K, MANIK N B, MITRA A. Dependence of frequency and amplitude of the ac current on the GMI properties of Co based amorphous wires[J]. Materials Science and Engineering, 2006, 415(1/2):195-201.
[13] SAMPAIO L C, SINNECKER E H C P, CERNICCHIARO G R C, et al. Magnetic microwires as macrospins in a long-range dipole-dipole interaction[J]. Physical Review B, 2000, 61(13):8976-8983.
[14] ZHANG S L, CHAI Y S, FANG D Q, et al. Giant magneto-impedance effect of two paralleled amorphous microwires[J]. Rare Metals, 2016, 35(4):344-348.
[15] ASLIBEIKI B, KAMELI P, SALAMATI H. The effect of dipole-dipole interactions on coercivity, anisotropy constant and blocking temperature of MnFe2O4 nanoparticles[J/OL]. Journal of Applied Physics, 2016, 119(6):063901(2016-02-14)[2017-02-01]. http://dx.doi.org/10.1063/1.4941388.
[16] FAN J, WU J, NING N, et al. Magnetic dynamic interaction in amorphous micro wire array[J]. IEEE Transaction on Magnetics, 2010, 46(6):2431-2434.
[17] PHAN M H, YU S C, CHUNG J S, et al. Magnetic characteristics and frequency dependence of permeability in Fe-B-N thin films[J]. Journal of Applied Physics, 2003, 93(12):9913-9915.
[18] PHAN M H, PENG H X, YU S C, et al. Large enhancement of GMI effect in polymer composites containing Co-based ferromagnetic microwires[J]. Journal of Magnetism and Magnetic Materials, 2007, 316(2):e253-e256.
[19] YANG X L, YANG J X, CHEN G, et al. Magneto-impedance effect in field and stress-annealed Fe-based nanocrystalline alloys[J]. Journal of Magnetism and Magnetic Materials, 1997, 175(3):285-289.
[20] RODIONOVA V, KUDINOV N, ZHUKOV A, et al. Interaction of bistable glass-coated microwires in different positional relationship[J]. Physica B:Condensed Matter, 2012, 407(9):1438-1441.
[21] 何济洲, 缪贵玲. 两个磁偶极子间的相互作用[J]. 南昌大学学报, 1996, 18(3):96-98.
[22] 易建宏, 李丽娅, 彭元东. 微波场作用下非晶合金Fe73.5Cu1Nb3Si13.5B9的纳米晶化[J]. 材料研究学报, 2007, 21(6):632-636.
[23] 王宗篪, 杨燮龙, 宫峰飞, 等. 纵向驱动巨磁阻抗效应的相位特性[J]. 华东师范大学学报(自然科学版), 2000(2):49-53.
[24] AMALOUA F, GIJS M A M. Giant magnetoimpedance in trilayer structures of patterned magnetic amorphous ribbons[J]. Applied Physics Letters, 2002, 81(9):1654-1656.
[25] 林宏, 袁望治, 赵振杰. FeCuNbSiB多层膜的磁特性和巨磁阻抗效应[J]. 功能材料与器件学报, 2007, 13(6):666-670.
文章导航

/