河口海岸学

近60年来洞庭湖出湖泥沙动态变化与影响机制

  • 于亚文 ,
  • 戴志军 ,
  • 梅雪菲 ,
  • 王杰 ,
  • 魏稳
展开
  • 华东师范大学 河口海岸学国家重点实验室, 上海 200062
于亚文,女,硕士研究生,研究方向为江湖交换机制.E-mail:demoyu94@163.com

收稿日期: 2017-10-18

  网络出版日期: 2018-07-19

基金资助

国家自然科学基金(41576087)

Dynamic characteristics and influencing mechanisms of suspended sediment discharge at the outlet of Dongting Lake

  • YU Ya-wen ,
  • DAI Zhi-jun ,
  • MEI Xue-fei ,
  • WANG Jie ,
  • WEI Wen
Expand
  • State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China

Received date: 2017-10-18

  Online published: 2018-07-19

摘要

洞庭湖是长江中游重要的调蓄湖泊,其出湖泥沙变化过程影响着湖泊演变和江湖关系调整.基于洞庭湖代表性水文站长时间序列的水文数据,利用百分位数、变差系数和小波分析等方法,分析洞庭湖出湖输沙量的动态变化特征及其控制因素.结果表明:洞庭湖出湖泥沙在1951—2015年可分为1951—1970年、1971—2002年和2003—2015年三个阶段,其中前两个阶段表现为下降趋势,2003—2015年年均输沙量则呈上升趋势;出湖输沙量年内分配不均,1951—1970年主要集中于3—12月,1971—2015年主要集中于3—8月,但2003—2015年输沙量峰值由1951—2002年的4月推迟至5月;出湖输沙量周期表现为44年和24年的全尺度周期震荡.从径流、水利工程建设和湖盆冲淤的角度分析洞庭湖出湖输沙量的变化原因,发现:出湖径流是造成输沙量年内分配不均的季节性变化特征和主周期模式的重要原因;荆江裁弯工程是导致1971—2002年洞庭湖出湖输沙量大幅减少的根本原因;随三峡工程运行,洞庭湖2003—2015年多年平均出湖输沙量相比于1971—2002年减少了30.1%;此外,洞庭湖湖盆由淤积转为冲刷,导致洞庭湖出湖输沙量在2007年之后有所增加.

本文引用格式

于亚文 , 戴志军 , 梅雪菲 , 王杰 , 魏稳 . 近60年来洞庭湖出湖泥沙动态变化与影响机制[J]. 华东师范大学学报(自然科学版), 2018 , 2018(4) : 159 -170 . DOI: 10.3969/j.issn.1000-5641.2018.04.016

Abstract

Dongting Lake's storage capacity is of vital significance to the Changjiang River. The changes in suspended sediment discharge (SSD) from Dongting Lake to the Changjiang River are closely linked to both the lake's evolution and the lake-river relationship. Based on long-term hydrologic data from 1951-2015, the dynamic characteristics of SSD at theDongting Lake outlet and associated controlling factors were analyzed by using percentile, coefficient of variation, and wavelet analysis. The results showed that the SSD time series (1951-2015) could be divided into three sub-periods, namely 1951-1970,1971-2002, and 2003-2015. Specifically, SSD of the first two periods exhibited decreasing trends, while SSD during the 2003-2015 period displayed on upward tendency. Apparent seasonal fluctuations were observed in SSD with a majority of sediment transported in March-December and in March-August during 1951-1970 and 1971-2015, respectively. However, the peak monthly SSD shifted from April in 1951-2002 to May in 2003-2015. Moreover, periodic 44-year and 24-year oscillations were detected across the entire SSD data set. The variation in SSD at the outlet of Dongting Lake can be explained by runoff, water conservancy projects, and the lake's erosion-deposition pattern. It was found that runoff at the outlet of Dongting Lake was the important factor induced the seasonal fluctuation and primary periodic oscillation of SSD. The Jingjiang Cut-off Project is likely responsible for the significant SSD decrease during the period 1971-2002. Annual average SSD over the period 2003-2015 decreased by 30.1% in comparison with 1971-2002 following opening of the Three Gorges Dam. In addition, the SSD series showed an increasing trend after 2007 as the Dongting Lake basin shifted from a deposition state into an erosion state.

参考文献

[1] WALLING D E. Human impact on land-ocean sediment transfer by the world's rivers[J]. Geomorphology, 2006, 79(3):192-216.
[2] DAI Z J, FAGHERAZZI S, MEI X F, et al. Decline in suspended sediment concentration delivered by the Changjiang (Yangtze) River into the East China Sea between 1956 and 2013[J]. Geomorphology, 2016, 268:123-132.
[3] LEMOALLE J, BADER J C, LEBLANC M, et al. Recent changes in Lake Chad:Observations, simulations and management options (1973-2011)[J]. Global and Planetary Change, 2012, 80/81:247-254.
[4] MEI X F, DAI Z J, DU J Z, et al. Linkage between Three Gorges Dam impacts and the dramatic recessions in China's largest freshwater lake, Poyang Lake[J]. Scientific Reports, 2015(5):18197. DOI:10.1038/srep18197.
[5] 齐述华, 熊梦雅, 廖富强, 等. 人类活动对鄱阳湖泥沙收支平衡的影响[J]. 地理科学, 2016, 36(6):888-894.
[6] 蒋卫国, 潘英姿, 侯鹏, 等. 洞庭湖区湿地生态系统健康综合评价[J]. 地理研究, 2009, 28(6):1665-1672.
[7] 戴志军, 李九发, 赵军凯, 等. 特枯2006年长江中下游径流特征及江湖库径流调节过程[J]. 地理科学, 2010(4):577-581.
[8] 黄群, 孙占东, 赖锡军, 等. 1950s以来洞庭湖调蓄特征及变化[J]. 湖泊科学, 2016, 28(3):676-681.
[9] 赵军凯, 李九发, 戴志军, 等. 枯水年长江中下游江湖水交换作用分析[J]. 自然资源学报, 2011, 26(9):1613-1627.
[10] 来红州, 莫多闻, 苏成. 洞庭湖演变趋势探讨[J]. 地理研究, 2004, 23(1):78-86.
[11] DU Y, CAI S M, ZHANG X Y, et al. Interpretation of the environmental change of Dongting Lake, middle reach of Yangtze River, China, by 210 Pb measurement and satellite image analysis[J]. Geomorphology, 2001, 41(2):171-181.
[12] 朱玲玲, 陈剑池, 袁晶, 等. 洞庭湖和鄱阳湖泥沙冲淤特征及三峡水库对其影响[J]. 水科学进展, 2014, 25(3):348-357.
[13] YIN H F, LIU G R, PI J G, et al. On the river-lake relationship of the middle Yangtze reaches[J]. Geomorphology, 2007, 85(3):197-207.
[14] 许全喜, 胡功宇, 袁晶. 近50年来荆江三口分流分沙变化研究[J]. 泥沙研究, 2009(5):1-8.
[15] 李景保, 周永强, 欧朝敏, 等. 洞庭湖与长江水体交换能力演变及对三峡水库运行的响应[J]. 地理学报, 2013, 68(1):108-117.
[16] 代稳, 吕殿青, 李景保, 等. 1951-2014年洞庭湖水沙阶段性演变特征及驱动因素分析[J]. 水土保持学报, 2017, 31(2):142-150.
[17] 长江水利委员会. 中华人民共和国水文年鉴第6卷长江流域水文资料第11-13册洞庭湖区[R]. 北京:中华人民共和国水利部水文局, 1951-2015.
[18] 水利部长江水利委员会. 长江泥沙公报[M]. 武汉:长江出版社, 2015.
[19] SOLOMON S D, QIN M, MANNING Z, et al. Climate Change 2007:the Physical Science Basis-Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change[C]. Cambridge, UK:Cambridge University Press, 2007:663-745.
[20] BONSAL B R, ZHANG X, VINCENT L A, et al. Characteristics of daily and extreme temperatures over Canada[J]. Journal of Climate, 2001, 14(9):1959-1976.
[21] GRINSTED A, MOORE J C, JEVREJEVA S. Application of the cross wavelet transform and wavelet coherence to geophysical time series[J]. Nonlinear Processes in Geophysics, 2004, 11(5/6):561-566.
[22] 刘晓琼, 刘彦随, 李同昇, 等. 基于小波多尺度变换的渭河水沙演变规律研究[J]. 地理科学, 2015, 35(2):211-217.
[23] 毛德华, 曹艳敏, 李锦慧, 等. 洞庭湖入出湖径流泥沙年内变化规律及成因分析[J]. 水资源与水工程学报, 2017, 28(1):32-39.
[24] 戴仕宝, 杨世伦, 郜昂, 等. 近50年来中国主要河流入海泥沙变化[J]. 泥沙研究, 2007(3):49-58.
[25] 李景保, 王克林, 秦建新, 等. 洞庭湖年径流泥沙的演变特征及其动因[J]. 地理学报, 2005, 60(3):503-510.
[26] 胡光伟, 毛德华, 李正最, 等. 60年来洞庭湖区进出湖径流特征分析[J]. 地理科学, 2014, 34(1):89-96.
[27] 谢永宏, 李峰, 陈心胜, 等. 荆江三口入洞庭湖水沙演变及成因分析[J]. 农业现代化研究, 2012, 33(2):203-206.
[28] DAI Z J, LIU J T. Impacts of large dams on downstream fluvial sedimentation:An example of the Three Gorges Dam (TGD) on the Changjiang (Yangtze River)[J]. Journal of Hydrology, 2013, 480(4):10-18.
[29] 李景保, 张照庆, 欧朝敏, 等. 三峡水库不同调度方式运行期洞庭湖区的水情响应[J]. 地理学报, 2011, 66(9):1251-1260.
文章导航

/