基于一个高分辨率的三维数值模式,定量化研究了夏季长江口与苏北海域之间的水体运动规律,探讨了季风和潮汐等外部动力因子对该海域水体运动的影响,并计算了苏北特定断面上的水体通量、长江淡水通量和苏北河流淡水通量.数值模拟结果表明,在气候态条件下,苏北海域水体净输运整体向北,苏北浅滩附近的水体净输运速度为10 cm/s,射阳河口附近水体产生离岸净输运速度,而沿40m等深线的水体净输运速度为7 cm/s左右.苏北近岸水体通量具有大小潮变化,小潮时断面水体通量最小,大潮时水体通量最大.潮汐对于长江口与苏北海域之间的水体运动具有巨大的影响,当没有潮汐作用时,长江口以北海域水体净输运均向北,沿40m等深线的东南方向水体输运现象消失;季风对于该海域的水体运动没有显著影响,仅仅改变了局部区域的水体输运量.
The objective of this study was to investigate summertime water movement and its response to wind and tidal forces between the Changjiang Estuary and the Subei coastal area based on a high-resolution, three-dimensional numerical model. The volumetric flux and the freshwater transport from the Changjiang River and the Subei local rivers were quantified across a number of cross-shelf sections. The results indicated that, under the studied climatologic conditions, the net transport in the Subei Coastal Water is generally northward. The velocity of this northward transport reaches 10 cm/s in the shallow area. Offshore transport occurs in the vicinity of the Sheyang Estuary, with a net transport velocity of circa 7 cm/s along the 40 m isobaths. The sectional water flux is related to the tidal range, which reaches a low point in neap tide and a high point in spring tide, respectively. The tide has great impact on water movement in this area. Without the tide, the net water transport is entirely northward north of the Changjiang River Estuary and the southeastward transport along the 40 m isobaths vanishes. On the other hand, the monsoon has no significant influence on the water movement; it only adjusts the water transport in a few local areas.
[1] LIU D, KEESING J K, XING Q, et al. World's largest macroalgal bloom caused by expansion of seaweed aquaculture in China[J]. Marine Pollution Bulletin, 2009, 58(6):888-895.
[2] 张志欣, 郭景松, 乔方利, 等. 苏北沿岸水的去向与淡水来源估算[J]. 海洋与湖沼, 2016, 47(3):527-532.
[3] 杨宏忠. 江苏海岸滩涂资源可持续开发的战略选择[D]. 北京:中国地质大学, 2012.
[4] 苏纪兰. 中国近海水文[M]. 北京:海洋出版社, 2005.
[5] XIA C, QIAO F, YANG Y, et al. Three-dimensional structure of the summertime circulation in the Yellow Sea from a wave-tide-circulation coupled model[J]. Journal of Geophysical Research Oceans, 2006, 111(C11):151-152.
[6] 刘志亮, 胡敦欣. 黄海夏季近岸海区环流的初步分析及其与风速的关系[J]. 海洋学报, 2009, 31(2):1-7.
[7] 乔方利, 王关锁, 吕新刚, 等. 2008与2010年黄海浒苔漂移输运特征对比[J]. 科学通报, 2011, 56(18):1470-1476.
[8] 韦钦胜, 葛人峰, 李艳, 等. 夏季江苏近海水文化学要素特征及其对沿岸水东北向扩展的指示[J]. 海洋学报, 2012, 34(5):197-204.
[9] BEARDSLEY R C, LIMEBURNER R, YU H, et al. Discharge of the Changjiang (Yangtze River) into the East China Sea[J]. Continental Shelf Research, 1985, 4(1):57-76.
[10] CHANG P H, ISOBE A. A numerical study on the Changjiang diluted water in the Yellow and East China Sea[J]. Journal of Geophysical Research Atmospheres, 2003, 108(C9):3299.
[11] 赵保仁. 长江冲淡水的转向机制问题[J]. 海洋学报, 1991, 13(5):600-610.
[12] 朱建荣, 沈焕庭, 周健. 夏季苏北沿岸流对长江冲淡水扩展影响的数值模拟[J]. 华东师范大学学报(自然科学版), 1997(2):62-67.
[13] 朱建荣, 肖成猷, 沈焕庭. 夏季长江冲淡水扩展的数值模拟[J]. 海洋学报, 1998, 20(5):13-22.
[14] 赵保仁, 方国洪, 曹德明. 渤海、黄海和东海的潮余流特征及其与近岸环流输送的关系[J]. 海洋科学集刊, 1995, 36:1-11.
[15] WU H, SHEN J, ZHU J, et al. Characteristics of the Changjiang plume and its extension along the Jiangsu Coast[J]. Continental Shelf Research, 2014, 76(2):108-123.
[16] WU H, ZHU J. Advection scheme with 3rd high-order spatial interpolation at the middle temporal level and its application to saltwater intrusion in the Changjiang Estuary[J]. Ocean Modelling, 2010, 33(1):33-51.
[17] WU H, ZHU J, SHEN J, et al. Tidal modulation on the Changjiang River plume in summer[J]. Journal of Geophysical Research Atmospheres, 2011, 116(C8):192-197.
[18] YUAN R, WU H, ZHU J, et al. The response time of the Changjiang plume to river discharge in summer[J]. Journal of Marine Systems, 2016, 154:82-92.
[19] AHSAN A K M Q, BLUMBERG A F. Three-dimensional hydrothermal model of Onondaga Lake, New York[J]. Journal of Hydraulic Engineering, 1999, 125(9):912-923.