为研究感潮作用对重污染河道内源硫、铁与氮变化的影响及其耦合关系,本研究以上海重污染感潮型河道为对象,通过模拟感潮型河道以探究稳定水位期泥水界面不同形态硫、铁和氮的动态变化,并借助于黑色关联度分析来解析内源硫、铁与氮行为的耦合作用.结果显示感潮模拟组上覆水NH4+-N削减率高达(82.2±1.92)%且TN削减率高达(86.49±2.31)%,表明感潮作用会影响泥水界面形成的好氧-缺氧-厌氧动态分布并促进硝化-反硝化耦合过程,有利于泥水界面总氮与氨氮的削减.灰色关联度分析结果显示间隙水硝态氮与还原态硫和铁的关联度最高为0.910 5和0.858 7.表明硫化物与二价铁对硝态氮的影响最为显著,推测感潮型重污染河道内源硫、铁与氮存在硫自养反硝化和铁自养反硝化的耦合作用.该研究有望为重污染感潮型河道修复与治理提供理论参考.
To study the impact of tidal effects on endogenous sulfur(S), iron (Fe), and nitrogen (N), as well as their possible coupling, the present work investigated the dynamic variations of endogenous S, Fe and N using a simulated heavily polluted tidal river system. In addition, Grey relational analysis (GRA) was applied to elucidate the coupling of endogenous S, Fe and N behavior. The results showed a NH4+-N reduction rate of (82.2±1.92)% and a TN reduction rate of (86.49±2.31)% for the simulated tidal system. The simulation suggested that a tidal alternation facilitated the formation of an oxic-anoxic-anaerobic microenvironment at the sediment-overlying water interface and thus stimulated the coupled nitrification-denitrification process, which was in favor of ammonium and total nitrogen removal. Grey relational analysis (GRA) showed the highest integrated grey relational grade between nitrate and reduced sulfur (0.910 5) and nitrate and iron (0.858 7) in interstitial water. The results indicated that nitrate was most affected by reduced sulfur and iron; we postulate that endogenous sulfur and iron with nitrogen might exist by sulfur-driven autotrophic denitrification or iron-driven autotrophic denitrification. This study may provide reference for treatment and restoration of heavily polluted tidal rivers.
[1] 余光伟, 雷恒毅, 刘广立, 等. 重污染感潮河道底泥释放特征及其控制技术研究[J]. 环境科学报, 2007, 27(9):1476-1484.
[2] 余光伟. 重污染感潮河道底泥原位修复技术与工程应用研究[D]. 广州:中山大学, 2007.
[3] 雷恒毅, 余光伟, 刘广立, 等. 珠江流域重污染感潮河道黑臭治理新技术[J]. 中山大学学报(自然科学版), 2007, 46(3):134-136.
[4] 李真, 黄民生, 何岩, 等. 铁和硫的形态转化与水体黑臭的关系[J]. 环境科学与技术, 2010, 33(6):1-3.
[5] 李文超, 王文浩, 何岩, 等. 黑臭河道沉积物中硫铁行为与氮磷循环的耦合机制[J]. 华东师范大学学报(自然科学版), 2015, 2(1):1-8.
[6] 李文超. 曝气扰动下城市黑臭河道底泥内源硫、铁行为与氮循环耦合作用研究[D]. 上海:华东师范大学, 2016.
[7] 国家环保局《水和废水监测分析方法》编委会. 水和废水监测分析方法[M]. 4版. 北京:中国环境科学出版社, 2002.
[8] 陈玉霞. 曝气复氧条件下黑臭河道底泥内源氮的迁移转化行为研究[D]. 上海:华东师范大学, 2007.
[9] HE Y, CHEN Y X, ZHANG Y F, et al. Role of aerated turbulence in the fate of endogenous nitrogen from malodorous river sediments[J]. Environmental Engineering Science, 2013, 30(1):11-16.
[10] 何岩, 沈叔云, 黄民生, 等. 城市黑臭河道底泥内源氮硝化-反硝化作用研究[J]. 生态环境学报, 2012, 21(6):1166-1170.
[11] 李志洪. 曝气扰动模式对黑臭河道底泥内源营养盐行为的影响作用及氮转化功能菌群响应规律研究[D]. 上海:华东师范大学, 2015.
[12] 尹洪斌. 太湖沉积物形态硫赋存及其与重金属和营养盐关系研究[D]. 南京:中国科学院南京地理与湖泊研究所, 2008.
[13] 焦涛. 城市河道沉积物-水体系硫化物赋存特征及反硫化过程研究[D], 南京:河海大学, 2007.
[14] 李伟杰, 汪永辉. 铁离子在水体中价态的转化及其与河道黑臭的关系[J]. 净水技术, 2007, 26(2):35-37.
[15] 尹洪斌,范成新, 李宝, 等. 太湖北部沉积物中铁硫的地球化学特征研究[J]. 地球化学, 2008, 37(6):595-601.
[16] TORRENTÓ C, URMENETA J, OTERO N, et al. Enhanced denitrification in groundwater and sediments from a nitrate-contaminated aquifer after addition of pyrite[J]. Chemical Geology, 2011, 287(1/2):90-101.
[17] JUNCHER JØRGENSEN C, JACOBSEN O S, ELBERLING B, et al. Microbial oxidation of pyrite coupled to nitrate reduction in anoxic groundwater sediment[J]. Environmental Science & Technology, 2009, 43(13):4851-4857.
[18] YANG X N, HUANG S, WU Q H, et al. Nitrate reduction coupled with microbial oxidation of sulfide in river sediment[J]. Journal of Soils Sediments, 2012, 12(9):1435-1444.
[19] SCHWIENTEK M, EINSIEDL F, STICHLER W, et al. Evidence for denitrification regulated by pyrite oxidation in a heterogeneous porous groundwater system[J]. Chemical Geology, 2008, 255(1):60-67.
[20] HAYAKAWA A, HATAKEYAMA M, ASANO R, et al. 2013. Nitrate reduction coupled with pyrite oxidation in the surface sediments of a sulfide-Rich ecosystem[J]. Journal of Geophysical Rsearch:Biogeosciences, 2013, 118(2):639-649.
[21] HAAIJER S C M, LAMERS L P M, SMOLDERS A J P, et al. Iron sulfide and pyrite as potential electron donors for microbial nitrate reduction in freshwater wetlands[J]. Geomicrobiology Journal, 2007, 24(5):391-401.
[22] SCHIPPERS A, JØRGENSEN B B. Biogeochemistry of pyrite and iron sulfide oxidation in marine sediments[J]. Geochimica et Cosmochimica Acta, 2002, 66(1):85-92.
[23] FDZ-POLANCO F, FDZ-POLANCO M, FERNANDEZ N, et al. New processes for simultaneous removal of nitrogen and sulfur under anearobic conditions[J]. Water Research, 2001, 35(4):1111-1114.
[24] 董凌霄. 硫酸盐还原对氨氧化的影响及其抑制特性研究[J]. 西安建筑科技大学, 2006, 38(3):425-429.
[25] SHEN J P, XU Z H, HE J Z. Frontiers in the microbial processes of ammonia oxidation in soils and sediments[J]. Journal of Soils Sediments, 2014, 14(6):1023-1029.
[26] DUMONT M G, MURRELL J C. Stable isotope probing-linking microbial identity to function[J]. Nature Reviews Microbiology, 2005, 3(6):499-504.
[27] BRUNET R C, GARCIA-GIL L J. Sulfide-induced dissimilatory nitrate reduction to ammonia in anaerobic freshwater sediments[J]. FEMS Microbiology Ecology, 1996, 21(2):131-138.
[28] LU W W, ZHANG H L, SHI W M. Dissimilatory nitrate reduction to ammonium in an anaerobic agricultural soil as affected by glucose and free sulfide[J]. European Journal of Soil Biology, 2013, 58:98-104.