物理学与电子学

光催化材料MIL-125(Ti)/BiOI的制备及光催化性能研究

  • 黄贤智 ,
  • 朴贤卿 ,
  • 蔡亚果
展开
  • 华东师范大学 纳光电集成与先进装备教育部工程研究中心, 上海 200062
黄贤智,男,硕士研究生,研究方向为光催化.E-mail:834620078@qq.com.

收稿日期: 2017-10-17

  网络出版日期: 2019-01-24

基金资助

海市自然科学基金(16ZR1410700)

Preparation of photocatalytic materials MIL-125(Ti)/BiOI and photocatalytic performance study

  • HUANG Xian-zhi ,
  • PIAO Xian-qing ,
  • CAI Ya-guo
Expand
  • Engineering Research Center for Nanophotonics and Advanced Instrument, Ministry of Education, East China Normal University, Shanghai 200062, China

Received date: 2017-10-17

  Online published: 2019-01-24

摘要

以五水硝酸铋、碘化钾、MIL-125(Ti)为原料,以乙二醇为溶剂,以柠檬酸为结构诱导剂,通过一步共沉淀法制备了异质结结构光催化剂MIL-125(Ti)/BiOI,并测试了该催化剂在可见光下对有机染料罗丹明B的光催化降解效果.通过XRD(X-ray Diffraction)、PL(Photolumiscence)、SEM(Scanning Electron Microscope)、BET和UV-Vis(Ultraviolet and Visible Spectrophotometer)等表征手段研究了其结构、形貌、光谱与催化性能间的关系,并从能带结构上分析了其催化机理.结果表明,通过调节Ti:Bi,MIL-125(Ti)/BiOI在可见光照射下对有机染料罗丹明B有很好的光催化降解效果,并且该催化剂具有良好的稳定性,具有一定的工业化应用前景.

本文引用格式

黄贤智 , 朴贤卿 , 蔡亚果 . 光催化材料MIL-125(Ti)/BiOI的制备及光催化性能研究[J]. 华东师范大学学报(自然科学版), 2019 , 2019(1) : 93 -104,114 . DOI: 10.3969/j.issn.1000-5641.2019.01.011

Abstract

With pentahydrate bismuth nitrate (Bi(NO3)35H2O), potassium iodide (KI), and MIL-125(Ti) as raw materials, ethylene glycol as solvent, and citric acid as the structural inducer, heterojunction structure light catalyst MIL-125(Ti)/BiOI was prepared through one-step coprecipitation. The effect of photocatalytic degradation of Rhodamine B in visible light was also tested. By a series of measurements, including XRD, PL, SEM, BET and UV-Vis, we researched the relationships between structure, morphology, spectrum and the catalytic performance of the catalyst. Furthermore, the catalytic mechanism was analysized via energy band structure. The results indicated that by adjusting the ratio of Ti/Bi, MIL-125(Ti)/BiOI has a good degradation effect on Rhodamine B under visible light radiation, which is stable and can be applied to industrial applications.

参考文献

[1] SE-NA KIM, JUN KIM, HEE-YOUNG KIM, et al. Adsorption/catalytic properties of MIL-125 and NH2-MIL-125[J]. Catalysis Today, 2013, 204:85-93
[2] CAO J, XU B U, LIN H L, et al. Chemical etching preparation of BiOI/BiOBr heterostructu-res with enhanced photocatalytic properties fororganic dye removal p[J]. Chem EngJ, 2012, 185/186:91-99.
[3] LI H L, EDDAOUDI M, O'KEEFFE M, et al. Design and synthesis of an exceptionally stable and highly porous metal-organic framework[J]. Nature, 1999, 402:276-279.
[4] NASALEVICH M A, VAN DER VEEN M, KAPTEIJN F, et al. Metal-organic frameworks as heterogeneous photocatalysts:Advantages and challenges[J]. CrystEngComm, 2014, 16:4919-4926.
[5] ALVARO M, CARBONELL E, FERRER B, et al. Semiconductor behavior of a metal-organic framework (MOF)[J]. Chemistry-A European Journal, 2007,13:5106-5112.
[6] HASAN Z, JEON J, JHUNG S H. Adsorptive removal of naproxen and clofibric acid from watarusing metalorganic frameworks[J]. Journal of Hazardous Materials, 2012, 209:151-157.
[7] DU J J, YUAN Y P, SUN J X, et al. New photocatalysts based on MIL-53 metal-organic frameworks for the decolorization of methylene blue dye[J]. Journal of Hazardous Materials, 2011, 190:945-951.
[8] XIA J, YIN S, LI H M, et al. Enhanced photocatalytic activityof bismuth oxyiodine (BiOI) porousmicrospheressynthesizedvia reactable ionicliquid-assistedsolvothermaI method[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2011, 387(123):23-28.
[9] LÜ Y H, LIU H, ZHANG W, et al. Room-temperature synthesis and high visible-light-induced photocatalytic activity of AgI/BiOI composites[J]. Journal of Environmental Chemical Engineering, 2013(1):526-533.
[10] HE Z Q, XIE L, TU J J, et al. Visible light-induced degradation of phone lover iodine-d-opedtitanium dioxide modified with platinum:Role of platinum and there action mechanism[J]. Journal of Chemical Physics, 2010, 114(1):526-532.
[11] CHAI I H, TANG X M, WEAVERS I K. Kinetics and mechanism of photo activated periodate re-action with 4-chlorophenol in acidic soIution[J]. Environmental Science & Technology, 2004, 38(24):6875-6880.
[12] FUJISHMA A, HONDA K. Photolysis-decomposition of water at surface of an irradiated semiconductor[J]. Nature, 1972, 238:37-38.
[13] SHI X J, CHEN X, CHEN X L, et al. PVP assisted hydrothermal synthesis of Bi-OBr hierarchical nanostructures and high photocatalytic capacity[J]. Chemical Engineering Journal, 2013, 222:120-127.
[14] HOFFMANN M R, MARTIN S T, CHOI W, BAHNEMANN D W. Environmental applications of semicon-ductor photocatalysis[J]. Chemical Reviews, 1995, 95:69-96.
[15] CHEN X, MAO S S. Titanium dioxide nanomaterials:synthesis, properties, modifications, and applications[J]. Chemical Reviews, 2007, 107(7):2891-2959.
[16] MAO Y B, WONG S S. Size and shape-dependent transformation of nanosized titanate into analogous Anatase Titania Nanostructures[J]. Journal of the American Chemical Society, 2006, 128(25):8217-8226.
[17] WANG W D, HUANG F Q, LIN X P. xBiOI-(1-x)BiOCl as efficient visible-light-driven photo-catalysts[J]. Scripta Materialia, 2007, 56(8):669-672.
[18] XIA J X, YIN S, LI H M, et al. Self-assembly and enhanced photocata-lytic properties of BiOI hollow microspheres via a reactable Ionic Liquid[J]. Langmuir, 2011, 27(3):1200-1206.
[19] CAO J, XU B Y, LUO B D, et al. Novel BiOI/BiOBr heterojunctionphotocatalysts with enhanced visible light photocatalytic properties[J]. Catalysis Communicati-ons, 2011, 13:63-68.
[20] HENDON C H, TIANA D, FONTECAVE M, et al. Engineering the optical res-ponse of the titanium-MIL-125 metal-organic framework through ligand functionalization[J]. Journal of the American Chemical Soceity, 2013, 135:10942-10945
[21] CHEN Y J, WEN M, WU Q S. Stepwise blossoming of BiOBr nanoplate-assembled microflowers and their visible-light photocatalytic activities[J]. CrystEngComm, 2011, 13:3035-3039.
[22] LEI Y Q, WANG G H, SONG S Y, et al. Room temperature, te-mplate-free synthesis of BiOI hierarchical structures:Visible-light photocatalytic and ele-ctrochemical hydrogen storage properties[J]. Dalton Transactions, 2010, 39:3273-3278.
[23] YU C L, YU J C, FAN C F, et al. Synthesis and characterization of Pt/BiOI na-noplate catalyst with enhanced activity under visible light irradiation[J]. Materials Science and Engineering B, 2010, 166:213-219.
[24] ROSS H, BENDIG J, HECHT S. Sensitized photo catalytical oxidation of terbutylazine[J]. Solar Energy Materials and Solar Cells, 1994, 33(4):475-481.
[25] CHATTERJEE D, MAHATA A. Demineralization of organic Pollutants on the DyeModified TiO2 semiconductor particulate system using visible light[J]. Applied Catalysis Environmental, 2001, 33(2):119-125.
[26] MOSER J, GRAETZEL M. Photoxensitixed electron injection in colloidal semiconductors[J]. Journal of the American Chemical Society, 1984, 106:6557-6564.
文章导航

/