化学学报

pH诱导调节聚联苯胺亚微米棒的形态与性能

展开
  • 1. 新疆师范大学 化学化工学院, 乌鲁木齐 830054;
    2. 新疆师范大学 电化学技术与应用工程研究中心, 乌鲁木齐 830054
王琳,女,硕士研究生,研究方向为高分子材料.E-mail:wang_lin17@sina.com.

收稿日期: 2018-03-02

  网络出版日期: 2019-03-27

基金资助

国家自然科学基金(51763023);新疆师范大学校级科研平台招标课题(XJNUGCZX122017A03)

pH induced regulation of the morphology and properties of polybenzidine submicron rods

Expand
  • 1. School of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi 830054, China;
    2. Engineering Research Center of Electrochemical Technology and Application, Xinjiang Normal University, Urumqi 830054, China

Received date: 2018-03-02

  Online published: 2019-03-27

摘要

以三嵌段共聚物聚丙烯酸正丁酯-b-聚苯乙烯-b-聚二乙烯基吡啶(PnBA28-b-PS75-b-P2VP104)为模板剂制备聚联苯胺,通过调节模板剂胶束溶液的pH值,探究不同pH值对聚联苯胺(PBZ)颗粒形貌及其性能的影响.利用凝胶渗透色谱(SEC)和核磁共振氢谱图(1H-NMR)等测试对三嵌段共聚物PnBA28-b-PS75-b-P2VP104的分子量分布、结构进行了确定.通过扫描微镜(SEM)、透射电镜(TEM)和红外光谱(FT-IR)等测试对材料的形貌、结构进行了表征.利用计时电位测试对材料进行了电化学电容性能的评价.初步探讨了使用不同pH值的模板剂、相同引发剂用量对PBZ形貌、结构和性能的影响.PBZ颗粒呈亚微米级至微米级棒状形貌,分布均匀、表面光滑.pH值为5时,PBZ棒状颗粒的直径大多在几十纳米到200nm之间,随着pH值的增大,样品形貌规整性降低;通过电化学测试可知,pH值为5时PBZ的放电比容量达到339.06 F/g.

本文引用格式

王琳, 张艳慧, 阿孜古丽·木尔赛力木, 阿比旦·阿布都乃则尔, 兰海蝶 . pH诱导调节聚联苯胺亚微米棒的形态与性能[J]. 华东师范大学学报(自然科学版), 2019 , 2019(2) : 164 -173 . DOI: 10.3969/j.issn.1000-5641.2019.02.018

Abstract

Polybenzidine was prepared using micelles of the triblock copolymer PnBA28-b-PS75-b-P2VP104 as a template. The effects of different pH values on the morphology and properties of polybenzidine (PBZ) were investigated by regulating the pH value of the micellar solution of the templates. The molecular weight distribution and structure of the triblock copolymer PnBA28-b-PS75-b-P2VP104 were determined by size exclusion chromatography (SEC) and nuclear magnetic resonance spectroscopy (1H-NMR). The morphology and structure of the composites were characterized using a scanning electron microscope (SEM), transmission electron microscope (TEM), and Fourier transform infrared spectroscopy (FT-IR). The electrochemical capacitance of the composites was evaluated by chronopotentiometry. The effects of the pH value on the morphology, structure and properties of PBZ were explored in this study. The PBZ particles were submicron and micron rods with uniform distribution and a smooth surface. PBZ rods obtained at pH=5 had an average diameter that ranged from several tens to 200 nm. The uniformity of particle morphologies was found to decrease with an increase in pH value; A electrochemical performance test showed that the specific capacitance of PBZ reached 339.06 F/g at pH=5.

参考文献

[1] DUONG N, HYEONSEOK Y. Recent advances in nanostructured conducting Polymers:from synthesis to practical applications[J]. Polymers, 2016, 8(4):118-156.
[2] 于波, 徐学诚. 聚吡咯结构与导电性能的研究[J]. 华东师范大学学报(自然科学版), 2014, 4:77-87.
[3] ERDEN F, LAI S C, CHI H, et al. Tailoring the Diameters of Polyaniline Nanofibers for Sensor Application[J]. ACS Omega, 2017, 2:6506-6513.
[4] SCHERR E M,MACDIARMID A G, Manohar S K, et al. Polyaniline:Oriented films and fibers[J]. Synthetic Metals, 1991, 41(1):735-738.
[5] WEI Y,HSUEH K F,JANG G W. A Study of leucoemeraldine and effect of redox reactions on molecular weight of chemically prepared polyaniline[J]. Macromolecules, 1994, 27(2):518-525.
[6] JANATA J,JOSOWICZ M. Conducting polymers in electronic chemical sensors[J]. Nature Materials, 2003, 2(1):19-24.
[7] TSENG R J,HUANG J,OUYANG J, et al. Polyaniline nanofiber/gold nanoparticle nonvolatile memory[J]. Nano Letters, 2005, 5(6):1077-1080.
[8] BHIM B P, INDU P, AMRITA S, et al. Multiwalled carbon nanotubes-based pencil graphite electrode modified with an electrosynthesized molecularly imprinted nanofilm for electrochemical sensing of methionine enantiomers[J]. Sensors and Actuators B, 2013, 176:863-874.
[9] YOON H, JANG J. Conducting-polymer nanomaterials for high-performance sensor applications:Issues and challenges[J]. Advanced Functional Materials, 2009, 19(10):1567-1576.
[10] LI X D, HUANG M R, DUAN W, et al. Novel multifunctional polymers from aromatia diamines by oxidative poly-merizations[J]. Chemical Review, 2002, 102(9):2925-3030.
[11] WANG Y G, LI H Q, XIA Y Y. Ordered whisker like polyaniline grown on the surface of mesoporous carbon and its electrochemical capacitance performance[J]. Advanced Materials, 2006, 18(19):2619-2623.
[12] SREEDHAR B, RADHIKA P, NEELIMA B. et al. Synthesis and characterization of polyaniline:nanospheres, nanorods and nanotubes-catalytic application for sulfoxidation reactions[J]. Polymers for Advanced Technologies, 2009, 20(12):950-958.
[13] PENNER R M. Controlling the morphology of electronically conductive polymers[J]. Journal of the Electrochemical Society, 1986, 33(10):2206-2207.
[14] LIANG L, LIU J, WINDISCH JR C F, et al. Direct assembly of large arrays of oriented conducting polymer nanowires.[J]. Angewandte Chemie International Edition, 2002, 41(19):3817-3820.
[15] LEE J I, CHO S H, PARK S M, et al. Highly aligned ultrahigh density arrays of conducting polymer nanorods using block copolymer templates[J]. Nano Letters, 2008, 8(8):2315-2320.
[16] WANG M, KUMAR S, LEE A, et al. Nanoscale co-organization of quantum dots and conjugated polymers using polymeric micelles as templates[J]. Journal of the American Chemical Society, 2008, 130(29):9481-9491.
[17] KUILA B K, STAMM M. Fabrication of oriented polyaniline nanostructures using block copolymer nanotemplates and their optical, electrochemical and electric properties[J]. J Mater Chem, 2010, 20(29):6086-6094.
[18] 阿孜古丽·木尔赛力木. 两亲性线形嵌段共聚物的合成及溶液自组装研究[D]. 西安:西北大学, 2014.
[19] WEI W, CHENG Q G, YA Q Q, et al. In situ synthesis of thermoresponsive polystyrenebpoly(Nisopropylacrylamide)bpolystyrene nanospheres and comparative study of the looped and linear poly(Nisopropylacrylamide)s[J]. Macromolecules, 2016, 49(7):2772-2781.
[20] QIN J L, CHEN Y M, YAN D D, et al. Dispersible shaped nanoobjects from bulk microphase separation high Tg of block copolymers without chemical cross-linking[J]. Macromolecules, 2010, 43:10652-10658.
[21] 任艳蓉. 基于PEO成分的环境刺激响应性聚合物的研究[D]. 上海:上海交通大学, 2010.
[22] WYMAN I W, LIU G. Micellar structures of linear triblock terpolymers:Three blocks but many possibilities[J]. Polymer, 2013, 54(8):1950-1978.
[23] HUANG J, VIRJI S, WEI llER B H, et al. Polyaniline nanofibers:facile synthesis and chemical sensors[J]. Journal of the American Chemical Society, 2003, 125(2):314-315.
[24] FABIANA D E, JUANA J S, ALEJANDRO H A, et al. Electrochemical detection of silver ions and the study of metalpolymer interactions on a polybenzidine film electrode[J]. Journal of Electroanalytical Chemistry, 2000, 494:60-68.
[25] 阿孜古丽·木尔赛力木, 亚合亚·吾守尔, 哈力木拉提, 等. 引发剂用量对聚联苯胺结构及性能的影响[J]. 精细化工, 2011, 28(10):954-958.
[26] BHIM B P, AMRITA S, INDU P, et al. Electrochemically grown imprinted polybenzidine nanofilm on multiwalled carbon nanotubes anchored pencil graphite fibers for enantioselective micro-solid phase extraction coupled with ultratrace sensing of d-and l-methionine[J]. Journal of Chromatography B, 2013, 912:65-74.
[27] HUANG J, KANER R B. Nanofiber formation in the chemical polymerization of aniline:A mechanistic study[J]. Angewandte Chemie, 2004, 43(43):5941-5945.
[28] TRAN H D, WANG Y, D'ARCY J M, et al. Toward an understanding of the formation of conducting polymer nanofibers[J]. Acs Nano, 2008, 2(9):1841-1848.
[29] MUSLIM A, SHI Y, YAN Y C, et al. Preparation of cylindrical multi-compartment micelles by the hierarchical self-assembly of ABC triblock polymer in solution[J]. RSC Adv, 2015, 5:85446-85452.
[30] LI Z B, KESSELMAN E, TALMON Y, et al. Multicompartment micelles from ABC miktoarm stars in water[J]. Science, 2004, 306(5693):98-101.
[31] 董盟阳, 赵昕, 陈大俊, 等. 聚(3,4-乙烯二氧噻吩)/碳纸复合材料的制备及其在作为超级电容器电极材料的应用[J]. 化学世界, 2016, 57(8):469-474.
文章导航

/