生命科学

超低温保存下藓类植物孢子萌发率的变化以6种藓类植物为例

  • 孙莉玮 ,
  • 高雪笛 ,
  • 许丹尔 ,
  • 王书琴 ,
  • 杨卓筠 ,
  • 王健
展开
  • 华东师范大学 生命科学学院, 上海 200241
孙莉玮,女,硕士研究生,研究方向为苔藓植物分子地理及种质资源保存研究.E-mail:51161300063@stu.ecnu.edu.cn.

收稿日期: 2018-05-25

  网络出版日期: 2019-05-30

基金资助

国家自然科学基金(31770371);华东师范大学本科生创业训练培育项目(2017PY-424);上海市大学生创新活动项目(201510269105)

Variation in germination rates of moss spores using a cryopreservation technique: A case study of spores from six moss species

  • SUN Li-wei ,
  • GAO Xue-di ,
  • XU Dan-er ,
  • Wang Shu-qin ,
  • YANG Zhuo-jun ,
  • WANG Jian
Expand
  • School of Life Sciences, East China Normal University, Shanghai 200241, China

Received date: 2018-05-25

  Online published: 2019-05-30

摘要

为了检验苔藓植物孢子超低温保存方法的适用性,该文对采自不同生境中的6种藓类孢子超低温保存前的干燥时间和低温预处理进行探索,并在最适处理条件下对其中5种藓类孢子进行不同时间梯度(1 d、15d、30 d、90 d和180 d)的超低温保存研究.结果表明:①经过干燥和低温预处理后,6种藓类孢子的最高萌发率均维持在较高水平(87.25%~96.21%);②与低温预处理相比,干燥处理在孢子超低温保存中更为关键.孢子在只进行干燥处理情况下其最高平均萌发率为74.97%~96.21%,而只对其进行低温预处理时的最高平均萌发率变化较大,从21.73%到90.94%;③5种藓类孢子在液氮保存1d后的平均萌发率均最高(87.25%~96.21%),且随着保存时间的延长,所有藓类孢子的萌发率都有所下降,但仍维持在相对较高的水平(73.69%~86.60%);④葫芦藓、丝瓜藓和长蒴藓孢子在保存30d后萌发率分别为86.49%、86.60%和84.98%,卵蒴真藓和丛生真藓孢子在保存180d后萌发率仍可达到73.69%和84.17%.研究表明,藓类孢子非常适合于超低温保存,而且可能代表一种简单、稳定、高效的苔藓植物种质资源保存材料.

本文引用格式

孙莉玮 , 高雪笛 , 许丹尔 , 王书琴 , 杨卓筠 , 王健 . 超低温保存下藓类植物孢子萌发率的变化以6种藓类植物为例[J]. 华东师范大学学报(自然科学版), 2019 , 2019(3) : 138 -143,154 . DOI: 10.3969/j.issn.1000-5641.2019.03.015

Abstract

To evaluate the applicability of cryopreservation for bryophyte spores, this study explored the effect of dehydration time and low temperature pretreatment; the study was used to identify the optimal conditions for six moss spores collected from different habitats. In addition, varying time periods (1 d, 15 d, 30 d, 90 d, 180 d) of spore cryopreservation were studied under the optimal pretreatment conditions identified. The results showed that:①After dehydration and low temperature pretreatment, the highest germination rates of spores from the six moss species were maintained (87.25%~96.21%). ②Compared to low temperature pretreatment, dehydration seems to be the key point of success for spore cryopreservation. The average spore germination rates ranged from 74.97% to 96.21% when treated with dehydration alone; in comparison, germination rates ranged from 21.73% to 90.94% when pretreated with low temperature alone. ③The average germination rates of spores from five moss species maintained their respective highest level (87.25%~96.21%) after cryopreservation for 1 d and then decreased with the prolongation of storage time; nevertheless, the germination rates still remained at relatively high levels (73.69%~86.60%).④ The average germination rates of spores from Funaria hygrometrica, Pohlia elongate, and Trematodon longicollis after storage for 30 d were 86.49%, 86.60%, and 84.98%, respectively. The germination rates of spores from Bryum blindii and B. caespiticium reached 73.69% and 84.17%, respectively, after storage for 180 d. The study indicates that the procedure for spore cryopreservation could be a simple, stable, and efficient method for storage of bryophyte species in conservation programs.

参考文献

[1] VANDERPOORTEN A, GOFFINET B. Introduction to Bryophyte[M]. Cambridge:Cambridge University Press, 2010:1-2.
[2] HYLANDER K, JONSSON B G. The conservation ecology of cryptogams[J]. Biological Conservation, 2007, 135(3):311-314.
[3] PATIÑO J, MATEO R G, ZANATTA F, et al. Climate threat on the Macaronesian endemic bryophyte flora[J/OL]. Scientific Reports, 2016. Doi:10.1038/srep29156. https://www.nature.com/articles/srep29156.pdf
[4] PENCE V C. Cryopreservation of bryophytes:The effects of abscisic acid and encapsulation dehydration[J]. Bryologist, 1998, 101(2):278-281.
[5] BURCH J, WILKINSON T. Cryopreservation of protonemata of Ditrichum cornubicum (Paton) comparing the effectiveness of four cryoprotectant pretreatments[J]. CryoLetters, 2002, 23(3):197-208.
[6] BURCH J. Some mosses survive cryopreservation without prior treatment[J]. Bryologist, 2003, 106(2):270-277.
[7] ROWNTREE J K, RAMSAY M M. How bryophytes came out of the cold:Successful cryopreservation of threatened species[J]. Biodiversity and Conservation, 2009, 18:1413-1420.
[8] PANGUA E, GARCIA-ALVAREZ L, PAJARÓN S. Studies on Cryptogamma crispa spore germination[J]. American Fern Journal, 1999, 89(2):159-170.
[9] ROGGE G D, VIANA A M, RANDI A M. Cryopreservation of spores of Dicksonia sellowiana:An endangered tree fern indigenous to south and central America[J]. CryoLetters, 2000, 21:223-230.
[10] SEGRETO R, HASSEL K, BARDAL R, et al. Desiccation tolerance and natural cold acclimation allow cryopreservation of bryophytes without pretreatment or use of cryoprotectants[J]. Bryologist, 2010, 113(4):760-769.
[11] VAN ZANTEN B O, GRADSTEIN S R. Experimental dispersal geography of neotropical liverworts[J]. Beiheft zur Nova Hedwigia, 1988, 90:41-94.
[12] 李秋萍, 姜丽佳, 鲁蓓蓓, 等. 细叶小羽藓孢子的超低温保存[J]. 华东师范大学学报(自然科学版), 2014(6):121-125.
[13] 杜荣骞. 生物统计学[M]. 北京:高等教育出版社, 2003.
[14] WIKLUND K, RYDIN H. Ecophysiological constraints on spore establishment in bryophytes[J]. Functional Ecology, 2004, 18(6):907-913.
[15] FULLER B J. Cryoprotectants:the essential antifreezes to protect life in the frozen state[J]. CryoLetters, 2004, 25(6):375-388.
[16] 简令成. 低温生物学与植物种质的长期保存[J]. 植物学通报, 1998, 5(2):65-68.
[17] 徐艳, 刘燕, 石雷. 大叶黑桫椤孢子超低温保存[J]. 植物生理学通讯, 2006, 42(1):55-57.
[18] WU S P, QIN Z Z, XIAO T Z, et al. Cryopreservation of gemmae of Marchantia polymorpha L. (Marchantiophyta, Marchantiaceae) without prior pretreatment[J]. CryoLetters, 2015, 36(2):91-96.
文章导航

/