数学

一类具有潜伏感染细胞的时滞HIV-1传染病模型

  • 杨俊仙 ,
  • 谢宝英
展开
  • 安徽农业大学 理学院, 合肥 230036
杨俊仙,女,副教授,研究方向为微分方程、生物数学.E-mail:yangjunxian1976@126.com.

收稿日期: 2018-05-16

  网络出版日期: 2019-07-18

基金资助

国家自然科学基金(11201002);安徽高校自然科学研究项目(KJ2017A815);安徽省教育厅资助项目(KJ2011Z130)

A class of delayed HIV-1 infection models with latently infected cells

  • YANG Jun-xian ,
  • XIE Bao-ying
Expand
  • School of Science, Anhui Agricultural University, Hefei 230036, China

Received date: 2018-05-16

  Online published: 2019-07-18

摘要

提出了一类具有潜伏感染细胞的时滞HIV-1传染病模型,定义了基本再生数R0,给出了无病平衡点P0x0,0,0,0)和慢性感染平衡点P*x*ω*y*v*)的存在条件.首先利用线性化方法,得到了无病平衡点和慢性感染平衡点的局部渐近稳定性.进一步通过构造相应的Lyapunov函数,并结合LaSalle不变集原理,证明了当R0≤1时,无病平衡点P0x0,0,0,0)是全局渐近稳定的;当R0>1时,慢性感染平衡点P*x*ω*y*v*)是全局渐近稳定的,但无病平衡点P0x0,0,0,0)是不稳定的.结果表明,模型中的潜伏感染时滞和感染时滞并不影响模型的全局稳定性,并通过数值模拟验证了所得结论.

本文引用格式

杨俊仙 , 谢宝英 . 一类具有潜伏感染细胞的时滞HIV-1传染病模型[J]. 华东师范大学学报(自然科学版), 2019 , 2019(4) : 19 -32 . DOI: 10.3969/j.issn.1000-5641.2019.04.003

Abstract

A class of delayed HIV-1 infection models with latently infected cells was proposed. The basic reproductive number R0 was defined, and the existence conditions of disease-free equilibrium P0(x0, 0, 0, 0) and chronic-infection equilibrium P*(x*, ω*, y*, v*) were given. First, the local asymptotic stability of infection-free equilibrium and chronicinfection equilibrium was obtained by the linearization method. Further, by constructing the corresponding Lyapunov functions and using LaSalle's invariant principle, it was proved that when the basic reproductive number R0 was less than or equal to unity, the infection-free equilibrium P0(x0, 0, 0, 0) was globally asymptotically stable; moreover, when the basic reproductive number R0 was greater than unity, the chronic-infective equilibrium P*(x*, ω*, y*, v*) was globally asymptotically stable, but the infection-free equilibrium P0(x0, 0, 0, 0) was unstable. The results showed that a latently infected delay and an intracellular delay did not affect the global stability of the model, and numerical simulations were carried out to illustrate the theoretical results.

参考文献

[1] 孙起麟. 艾滋病病毒感染和治疗动力学的理论研究与应用[D]. 北京:北京科技大学, 2015.
[2] 王开发, 邱志鹏, 邓国宏. 病毒感染群体动力学模型分析[J]. 系统科学与数学, 2003, 32(4):433-443.
[3] PERELSON A S, NELSON P W. Mathematical models of HIV dynamics in vivo[J]. SIAM Review, 1999, 41(1):3-44
[4] NOWAK M A, ANDERSON R M, BOERLIJST M C, et al. HIV-1 evolution and disease progression[J], Science, 1996, 274(5289):1008-1011.
[5] KOROBEINIKOV A. Global properties of basic virus dynamics models[J]. Bulletin of Mathematical Biology, 2004, 66(4):879-883.
[6] NOWAK M A, BANGHAM C R M. Population dynamics of immune responses to persistent viruses[J]. Science, 1996, 272(5258):74-79.
[7] SONG X Y, NEUMANN A U. Global stability and periodic solution of the viral dynamics[J]. Journal of Mathematical Analysis and Applications, 2007, 329(1):281-297.
[8] BEDDINGTON J R. Mutual Interference Between Parasites or Predators and its Effect on Searching Efficiency[J]. Journal of Animal Ecology, 1975, 44(1):331-340.
[9] DEANGELIS D L, GOLDSTEIN R A, O'NEILL R V. A model for tropic interaction[J]. Ecology, 1975, 56(4):881-892.
[10] XU R. Global stability of an HIV-1 infection model with saturation infection and intracellular delay[J]. Journal of Mathematical Analysis and Application, 2011, 375(1):75-81.
[11] GUO T, LIU H H, XU C L, et al. Dynamics of a delayed HIV-1 infection model with saturation incidence rate and CTL immune response[J]. International Journal of Bifurcation and Chaos, 2016, 26(4):1-26.
[12] BAGASRA O, POMERANTZ R J. Human immunodeficiency virus type-I provirus is demonstrated in peripheral blood monocytes in vivo:A study utilizing an in situ polymerase chain reaction[J]. AIDS Research and Human Retroviruses, 1993, 9(1):69-76.
[13] PACE M J, AGOSTO L, GRAF E H. HIV reservoirs and latency models[J]. Virology, 2011, 411(2):344-354.
[14] CAPISTRÁN M A. A study of latency, reactivation and apoptosis throughout HIV pathogenesis[J]. Mathematical and Computer Modelling, 2010, 52(7/8):1011-1015.
[15] WANG H B, XU R, WANG Z W, et al. Global dynamics of a class of HIV-1 infection models with latently infected cells[J]. Nonlinear Analysis:Modeling and Control, 2015, 20(1):21-37.
[16] HALE J K, LUNEL S V. Introduction to Functional Differential Equations[M]. New York:Springer, 1993.
文章导航

/