生态与环境科学

硫化物对黑臭河道底泥反硝化潜势的影响作用研究

  • 汪珊 ,
  • 朱瑾 ,
  • 何岩 ,
  • 黄民生 ,
  • 周运昌
展开
  • 1. 华东师范大学 生态与环境科学学院, 上海 200241;
    2. 华东师范大学 上海市城市化生态过程与生态恢复重点实验室, 上海 200241
汪珊,女,本科生.E-mail:shanwangss@163.com.

收稿日期: 2018-07-07

  网络出版日期: 2019-07-18

基金资助

国家自然科学基金(41877477);上海市科技创新行动计划(18DZ1203806)

Effect of sulfide on the denitrification potential of sediment in black-odor rivers

  • WANG Shan ,
  • ZHU Jin ,
  • HE Yan ,
  • HUANG Min-sheng ,
  • ZHOU Yun-chang
Expand
  • 1. School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China;
    2. Shanghai Key Laboratory of Urbanization Ecological Restoration, East China Normal University, Shanghai 200241, China

Received date: 2018-07-07

  Online published: 2019-07-18

摘要

通过探究不同浓度硫化物对黑臭河道底泥反硝化过程的影响,同时分析底泥细菌、反硝化菌和硫酸盐还原菌的响应变化,为强化底泥反硝化脱氮提供理论依据与技术支撑.研究结果表明:较低浓度的硫化物(8 mg-1)对底泥反硝化潜势无明显影响;适宜浓度的硫化物(40和64 mg-1)对底泥反硝化有明显的促进作用,且浓度越高促进作用越明显;当硫化物浓度升高到96 mg-1及以上时,还原态硫对反硝化过程起抑制作用,浓度越高抑制作用越明显.底泥经过一段时间的反硝化培养,细菌多样性以变形菌门、绿弯菌门、拟杆菌门为主;同时,底泥细菌总数明显增加,代谢菌群的nirS丰度比、dsrB丰度比分别为1.42%和0.05%,相较原始底泥(0.15%,0.19%),反硝化细菌增值明显,但硫酸盐还原菌数量有所下降.

本文引用格式

汪珊 , 朱瑾 , 何岩 , 黄民生 , 周运昌 . 硫化物对黑臭河道底泥反硝化潜势的影响作用研究[J]. 华东师范大学学报(自然科学版), 2019 , 2019(4) : 156 -164 . DOI: 10.3969/j.issn.1000-5641.2019.04.015

Abstract

This study aimed to explore the effect of sulfide on sediment denitrification in different concentrations, analyze the response of bacteria, including denitrifying and sulfate-reducing bacteria, and provide a theoretical basis and technical support for improving the denitrification process of sediment in black-odor rivers. The results showed that a low concentration of sulfides (8 mg·L-1) didn't have a significant effect. In constrast, a moderate concentration of sulfides (40 mg·L-1, 64 mg·L-1) promoted the denitrification process; in this range the higher the concentration of sulfides, the faster the rate of nitrate degradation. When the sulfide concentration rises to 96 mg·L-1 and above, reductive sulfur inhibits denitrification, and the higher the concentration, the more obvious the inhibition. After a period of denitrification of the culture, the bacterial diversity is mainly composed of Proteobacteria, Chlofloflexi, and Bacillus. As the same time, the total number of bacteria in the sediment increased; the abundance ratio of nirS to 16S rRNA gene and dsrB to 16S rRNA gene were 1.42% and 0.05%, respectively. Compared with the original sediment (0.15%, 0.19%), the denitrifying bacteria increased significantly, but the number of sulfate-reducing bacteria decreased.

参考文献

[1] 朱艺双, 朱瑾, 何岩. 城市黑臭河道内源硫与硝酸盐异化还原过程的耦合机制研究[C]//2017中国环境科学学会科学与技术年会论文集(第二卷), 2017.
[2] SHAO M F, ZHANG T, FANG H H. Sulfur-driven autotrophic denitrification:Diversity, biochemistry, and engineering applications[J]. Applied Microbiology and Biotechnology, 2010, 88(5):1027-1042.
[3] SENGA Y, MOCHIDA K, FUKUMORI R, et al. N2O accumulation in estuarine and coastal sediments:The influence of H2S on dissimilatory nitrate reduction[J]. Estuarine, Coastal and Shelf Science, 2006, 67(1/2):231-238.
[4] BOWLES M W, NIGRO L M, TESKE A P, et al. Denitrification and environmental factors influencing nitrate removal in Guaymas Basin hydrothermally altered sediments[J]. Frontiers in Microbiology, 2012, 3(377):1-11.
[5] 汪建华. 城市黑臭河道氮转化途径分型表征及微生物作用机理研究[D]. 上海:华东师范大学, 2017.
[6] PLUMMER P, TOBIAS C, CADY D. Nitrogen reduction pathways in estuarine sediments:Influences of organic carbon and sulfide[J]. Journal of Geophysical Research:Biogeosciences, 2015, 120(10):1958-1972.
[7] MAHMOOD Q, ZHENG P, CAI J, et al. Anoxic sulfide biooxidation using nitrite as electron acceptor[J]. Journal of Hazardous Materials, 2007, 147(1/2):249-256.
[8] AN S, GARDNER W S. Dissimilatory nitrate reduction to ammonium (DNRA) as a nitrogen link, versus denitrification as a sink in a shallow estuary (Laguna Madre/Baffin Bay, Texas[J]. Marine Ecology Progress Series, 2002, 237:41-50.
[9] JUNCHER J C, JACOBSEN O S, ELBERLING B, et al. Microbial oxidation of pyrite coupled to nitrate reduction in anoxic groundwater sediment[J]. Environmental Science & Technology, 2009, 43(13):4851-4857.
[10] SHAO M, ZHANG T, FANG H H. Sulfur-driven autotrophic denitrification:Diversity, biochemistry, and engineering applications[J]. Applied Microbiology and Biotechnology, 2010, 88(5):1027-1042.
[11] DAPENA-MORA A, FERNÁNDEZ I, CAMPOS J L, et al. Evaluation of activity and inhibition effects on Anammox process by batch tests based on the nitrogen gas production[J]. Enzyme and Microbial Technology, 2007, 40(4):859-865.
[12] 邓旭亮, 王爱杰, 荣丽丽, 等. 硫自养反硝化技术研究现状与发展趋势[J]. 工业水处理, 2008(3):13-16.
[13] YANG X, HUANG S, WU Q. Nitrate reduction coupled with microbial oxidation of sulfide in river sediment[J]. Journal of Soils and Sediments, 2012, 12(9):1435-1444.
[14] HAAIJER S C M, LAMERS L P M, SMOLDERS A J P, et al. Iron sulfide and pyrite as potential electron donors for microbial nitrate reduction in freshwater wetlands[J]. Geomicrobiology Journal, 2007, 24(5):391-401.
[15] HAYAKAWA A, HATAKEYAMA M, ASANO R, et al. Nitrate reduction coupled with pyrite oxidation in the surface sediments of a sulfide-rich ecosystem[J]. Journal of Geophysical Research Biogeosciences, 2013, 118(2):639-649.
[16] 张梦绯. 生态修复技术在治理城市黑臭河流的应用[J]. 污染防治术, 2017, 30(5):59-61.
[17] 李文超, 王琦, 石寒松, 等. 城市黑臭河道中硫、铁自养反硝化微生物研究[J]. 广东化工, 2017, 44(4):77-78.
[18] 程庆霖, 何岩, 黄民生, 等. 城市黑臭河道治理方法的研究进展[J]. 上海化工, 2011, 36(2):25-31.
[19] 李艳梅. 硫自养反硝化细菌脱氮除硫性能研究[D]. 辽宁大连:大连理工大学, 2012.
[20] SASS H, RAMAMOORTHY S, YARWOOD C, et al. Desulfovibrio idahonensis sp. nov., sulfate-reducing bacteria isolated from a metal (loid)-contaminated freshwater sediment[J]. International Journal of Systematic and Evolutionary Microbiology, 2009, 59(9):2208-2214.
[21] HALLER L, TONOLLA M, ZOPFI J, et al. Composition of bacterial and archaeal communities in freshwater sediments with different contamination levels (Lake Geneva, Switzerland)[J]. Water Research, 2011, 45(3):1213-1228.
[22] MEYER B, KUEVER J. Molecular analysis of the distribution and phylogeny of dissimilatory adenosine-5'-phosphosulfate reductase-encoding genes (aprBA) among sulfur-oxidizing prokaryotes[J]. Microbiology, 2007, 153(10):3478-3498.
[23] MEYER B, KUEVER J. Molecular Analysis of the diversity of sulfate-reducing and sulfur-oxidizing prokaryotes in the environment, using aprA as functional marker gene[J]. Applied and Environmental Microbiology, 2007, 73(23):7664-7679.
[24] MEYER B, KUEVER J. Phylogeny of the alpha and beta subunits of the dissimilatory adenosine-5'-phosphosulfate (APS) reductase from sulfate-reducing prokaryotes-origin and evolution of the dissimilatory sulfate-reduction pathway[J]. Microbiology, 2007, 153(7):2026-2044.
[25] PHILIPPOT L. Denitrifying genes in bacterial and Archaeal genomes[J]. B Biochimica et Biophysica Acta, 2002, 1577(3):355-376.
[26] 孙韶玲. 水体黑臭演化过程及挥发性硫化物的产生机制初步研究[D]. 山东烟台:中国科学院烟台海岸带研究所, 2017.
[27] YE W J, LIU X L, LIN S Q, et al. The vertical distribution of bacterial andarchaeal communities in the water and sediment of LakeTaihu[J]. FEMS Microbiology Ecology, 2009, 70:263-276.
[28] PURCELL A M, MIKUCKI J A, ACHBERGER A M, et al. Microbial sulfur transformations in sediments from Subglacial Lake Whillans[J]. Frontiers in Microbiology, 2014, 5(594):1-16.
[29] CARDOSO R B, SIERRA-ALVAREZ R, ROWLETTE P, et al. Sulfide oxidation under chemolithoautotrophic denitrifying conditions[J]. Biotechnology and Bioengineering, 2006, 95(6):1148-1157.
[30] FLANAGAN D A, GREGORY L G, CARTER J P, et al. Detection of genes for periplasmic nitrate reductase in nitrate respiring bacteria and in community DNA[J]. FEMS Microbiology Letter, 1999, 177(2):263-270.
[31] ANGELONI N L, JANKOWSKI K J, TUCHMAN N C, et al. Effects of an invasive cattail species (Typha x glauca) on sediment nitrogen and microbial community composition in a freshwater wetland[J]. FEMS Microbiology Letters, 2006, 263(1):86-92.
[32] BRAKER G, TIEDJE J M. Nitric oxide reductase (norB) genes from pure cultures and environmental samples[J]. Applied and Environmental Microbiology, 2003, 69(6):3476-3483.
[33] ANGELONI N L, JANKOWSKI K J, TUCHMAN N C, et al. Effects of an invasive cattail species (Typha x glauca) on sediment nitrogen and microbial community composition in a freshwater wetland[J]. FEMS Microbiology Letters, 2006, 263(1):86-92.
[34] BIDERRE-PETIT C, BOUCHER D, KUEVER J, et al. Identification of sulfur-cycle prokaryotes in a low-sulfate lake (Lake Pavin) using aprA and 16S rRNA gene markers[J]. Microbial Ecology, 2011, 61(2):313-327.
[35] WATANABE T, KOJIMA H, FUKUI M. Identity of major sulfur-cycle prokaryotes in freshwater lake ecosystems revealed by a comprehensive phylogenetic study of the dissimilatory adenylylsulfate reductase[J]. Scientific Reports, 2016, 6(1):1-9.
[36] WATANABE T, KOJIMA H, TAKANO Y, et al. Diversity of sulfur-cycle prokaryotes in freshwater lake sediments investigated using aprA as the functional marker gene[J]. Systematic and Applied Microbiology, 2013, 36(6):436-443.
[37] KOJIMA H, FUKUI M. Sulfuricella denitrificans gen. nov., sp. nov., a sulfur-oxidizing autotroph isolated from a freshwater lake[J]. I International Journal of Systematic and Evolutionary Microbiology, 2010, 60(12):2862-2866.
[38] SHAO M, ZHANG T, FANG H H. Sulfur-driven autotrophic denitrification:diversity, biochemistry, and engineering applications[J]. Applied Microbiology and Biotechnology, 2010, 88(5):1027-1042.
[39] KOJIMA H, WATANABE T, IWATA T, et al. Identification of major planktonic sulfur oxidizers in stratified freshwater Lake[J]. Plos One, 2014, 9(4):1-7.
[40] BISOGNI J J, DRISCOLL C T. Denitrification Using Thiosulfate and Sulfide[J]. J Env Eng Div, 1997, 103(4):593-604
[41] RIOS-DEL TORO E E, CERVANTES F J. Coupling between anammox and autotrophic denitrification for simultaneous removal of ammonium and sulfide by enriched marine sediments[J]. Biodegradation, 2016, 27(2/3):107-118.
[42] REYES-AVILLA J, RAZO-FLORE E, GOMEZ J. Simultaneous biological removal of nitrogen, carbon and sulfur by denitrification[J]. Water Research, 2004, 38(14/15):3313-3321.
[43] 王爱杰, 杜大仲, 任南琪. 脱氮硫杆菌在废水脱硫、脱氮处理工艺中的应用[J]. 哈尔滨工业大学学报, 2004, 36(4):423-425.
[44] ZHANG S Y, ZHOU Q H, XU D, et al. Effects of sediment dredging on water quality and zooplankton community structure in a shallow of eutrophic lake[J]. Journal of Environmental Sciences, 2010, 22(2):218-224.
[45] 李志洪. 曝气扰动模式对黑臭河道底泥内源营养盐行为的影响作用及氮转化功能菌群响应规律研究[D]. 上海:华东师范大学, 2015:8-14.
文章导航

/