数据驱动的计算教育学

基于模糊聚类和支持向量回归的成绩预测

  • 申航杰 ,
  • 琚生根 ,
  • 孙界平
展开
  • 四川大学计算机学院, 成都 610065
申航杰,女,硕士研究生,研究方向为数据科学.E-mail:13693499219@163.com.

收稿日期: 2019-07-28

  网络出版日期: 2019-10-11

基金资助

四川省科技厅重点研发项目(2018GZ0182);四川大学未来教育研究专项(SCUFEB2019004)

Performance prediction based on fuzzy clustering and support vector regression

  • SHEN Hang-jie ,
  • JU Sheng-gen ,
  • SUN Jie-ping
Expand
  • College of Computer Science, Sichuan University, Chengdu 610065, China

Received date: 2019-07-28

  Online published: 2019-10-11

摘要

现有的成绩预测模型往往过度使用不同类型的属性,导致过于复杂的分数预测方法,或是需要人工参与.为提高学生成绩预测的准确率和可解释性,提出了一种融合模糊聚类和支持向量回归的成绩预测方法.首先引入模糊逻辑来计算隶属度矩阵,根据学生的历史成绩进行聚类,随后对每个聚类簇利用支持向量回归理论对成绩轨迹进行拟合建模.此外,结合学生学习行为等相关属性,对最终的预测结果做调整.在多个基准数据集上进行了实验测试,验证了该方法的有效性.

本文引用格式

申航杰 , 琚生根 , 孙界平 . 基于模糊聚类和支持向量回归的成绩预测[J]. 华东师范大学学报(自然科学版), 2019 , 2019(5) : 66 -73,84 . DOI: 10.3969/j.issn.1000-5641.2019.05.005

Abstract

Existing performance prediction models tend to overuse different types of attributes, leading to either overly complex prediction methods or models that require manual participation. To improve the accuracy and interpretation of student performance prediction, a method based on fuzzy clustering and support vector regression is proposed. Firstly, fuzzy logic is introduced to calculate the membership matrix, and students are clustered according to their past performance. Then, we use Support Vector Regression (SVR) theory to fit and model performance trajectory for each cluster. Lastly, the final prediction results are adjusted in combination with the students' learning behavior and other related attributes. Experimental results on several baseline datasets demonstrate the validity of the proposed approach.

参考文献

[1] 吕红胤,连德富,聂敏,等.大数据引领教育未来:从成绩预测谈起[J].大数据, 2015, 1(4):118-121.
[2] BORKAR S, RAJESWARI K. Attributes selection for predicting students' academic performance using education data mining and artificial neural network[J]. International Journal of Computer Applications, 2014, 86(10):25-29.
[3] LAN A S, WATERS A E, STUDER C, et al. Sparse factor analysis for learning and content analytics[J]. Journal of Machine Learning Research, 2013, 15(1):1959-2008.
[4] 张嘉,张晖,赵旭剑,等.规则半自动学习的概率软逻辑推理模型[J].计算机应用, 2018, 38(11):98-103.
[5] 薛颖,沙秀艳.基于改进模糊聚类算法的灰色预测模型[J].统计与决策, 2017(9):29-32.
[6] 文传军,詹永照.基于样本模糊隶属度归n化约束的松弛模糊C均值聚类算法[J].科学技术与工程, 2017, 17(36):96-104.
[7] 赵琦,孙泽斌,冯文全,等.一种基于支持向量回归的建模方法[J].北京航空航天大学学报, 2017, 43(2):352-359
[8] 张麒增,戴翰波.基于数据预处理技术的学生成绩预测模型研究[J].湖北大学学报(自然科学版), 2019, 41(1):106-113.
[9] 孙毅,刘仁云,王松,等.基于多元线性回归模型的考试成绩评价与预测[J].吉林大学学报(信息科学版), 2013, 31(4):404-408.
[10] 陈岷.因子分析和神经网络相融合的体育成绩预测模型[J].现代电子技术, 2017(5):138-141.
[11] NÚÑEZ J C, SUÁREZ N, ROSÁRIO P, et al. Relationships between perceived parental involvement in homework, student homework behaviors, and academic achievement:Differences among elementary, junior high, and high school students[J]. Metacognition and Learning, 2015, 10(3):375-406.
[12] BUNKAR K, SINGH U K, PANDYA B, et al. Data mining:Prediction for performance improvement of graduate students using classification[C]//IEEE 2012 Ninth International Conference on Wireless and Optical Communications Networks (WOCN). New York:IEEE, 2012:1-5.
文章导航

/