生态与环境科学

新型悬浮填料强化硝化作用试验研究

  • 黄民生 ,
  • 杨银川 ,
  • 崔贺 ,
  • 杨乐 ,
  • 何岩 ,
  • 曹承进
展开
  • 1. 华东师范大学 生态与环境科学学院, 上海 200241;
    2. 华东师范大学 上海市城市化生态过程与生态恢复重点实验室, 上海 200241
黄民生,男,教授,博士生导师,研究方向为水环境治理与修复.E-mail:mshuang@des.ecnu.edu.cn.

收稿日期: 2018-07-18

  网络出版日期: 2019-11-26

Experimental study on a new type of suspended filler for enhanced nitrification

  • HUANG Min-sheng ,
  • YANG Yin-chuan ,
  • CUI He ,
  • YANG Le ,
  • HE Yan ,
  • CAO Cheng-jin
Expand
  • 1. School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China;
    2. Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, East China Normal University, Shanghai 200241, China

Received date: 2018-07-18

  Online published: 2019-11-26

摘要

提出了一种包裹沸石粉与硝化细菌的新型悬浮填料,用于城镇污水厂的强化硝化模拟试验研究,并根据有无沸石粉和硝化细菌设计出3组试验装置.通过监测3组试验装置进出水NH4+-N、NO2--N和NO3--N的浓度变化情况评价新型悬浮填料的强化硝化性能,并结合新型悬浮填料生物膜中的微生物群落多样性来解析其硝化机理.结果表明:相比仅包裹沸石粉或硝化细菌的单一悬浮填料,同时包裹沸石粉和硝化细菌的复合悬浮填料在试验装置中对水体中NH4+-N的平均去除率最高(68.3%),且NO2--N平均浓度最低(12.62mg/L)、NO3--N平均浓度最高(7.81 mg/L),表明沸石粉和硝化细菌的组合能够明显提升填料的硝化性能,且沸石粉对微生物的硝化过程可能具有促进作用;新型悬浮填料中沸石粉的加入更有利于硝化相关菌属的富集和生长,从而造成微生物物种多样性的降低;用于强化硝化的新型悬浮填料的生物膜中的Nitrosomonas菌属占绝对优势,从而为体系中NH4+-N的转化提供有力保障,而填料中沸石粉的引入能够进一步促进Nitrospira菌属比例的提高,从而减少体系中NO2--N积累的可能性.本研究旨在为该填料的工程化应用提供依据和参数.

本文引用格式

黄民生 , 杨银川 , 崔贺 , 杨乐 , 何岩 , 曹承进 . 新型悬浮填料强化硝化作用试验研究[J]. 华东师范大学学报(自然科学版), 2019 , 2019(6) : 115 -122 . DOI: 10.3969/j.issn.1000-5641.2019.06.011

Abstract

A new type of suspended filler containing zeolite powder and nitrifying bacteria was proposed in this study. The new filler was used in an enhanced nitrification model experiment of wastewater treatment plant (WWTP), in which three devices were designed with combinations of zeolite powder and nitrifying bacteria. The nitrification performance of the new suspended fillers were evaluated by monitoring changes in NH4+ -N, NO2- -N and NO3- -N concentration in the three devices. The microbial community structure and diversity in the biofilm of the fillers, furthermore, were analyzed to reveal the nitrification mechanism. The results showed that compared with a single suspension filler containing only zeolite powder or nitrifying bacteria, the composite suspension filler containing zeolite powder and nitrifying bacteria had the highest average removal rate of NH4+ -N (68.3%), the lowest average concentration of NO2- -N (12.62 mg/L), and the highest average concentration of NO3- -N (7.81 mg/L). Hence, the study demonstrated that the combination of zeolite powder and nitrifying bacteria can significantly improve the nitrification performance of the filler, and zeolite powder may promote the microbial nitrification process. The addition of zeolite powder in the new suspended filler was more conducive to the enrichment and growth of nitrifying bacteria, resulting in the decrease of microbial species diversity. The Nitrosomonas genus in the biofilm of the new suspension filler for enhanced nitrification has an advantage, which provides a strong guarantee for the conversion of NH4+ -N in the system. The introduction of zeolite powder in the filler can further promote an increase in the proportion of the Nitrospira genus, thereby reducing the possibility of NO2- -N accumulation in the system. The purpose of this study was to improve the basis and parameters for the engineering application of new types of suspended fillers.

参考文献

[1] 周振, 唐建国, 张爱平, 等. 城镇污水处理厂强化硝化技术现状分析[J]. 中国给水排水,2013, 20:5-8.
[2] 刘秀红, 彭永臻, 马涛, 等. 硝化类型对污水脱氮过程中N_2O产生量的影响[J]. 中国环境科学, 2007(5):633-637.
[3] 王小菊, 何春平, 王震, 等. 高效硝化细菌的筛选及特性研究[J]. 中国环境科学,2013(2):286-292.
[4] 赵银慧, 李莉娜, 景立新, 等. 污水处理厂氮排放特征[J]. 中国环境监测,2015(4):58-61.
[5] 魏继林, 彭党聪, 聂玲, 等. 硝化菌添加强化硝化实验研究[J]. 水处理技术, 2014(7):111-115.
[6] GEMAEY K V, JJORGENSEN S B. Benchmarking combined biological phosphorus and nitrogen removal wastewater treatment processes[J]. Control Engineering Practice, 2004, 12(3):357-373.
[7] 周海东, 刘勤亚, 张业健. 泥龄应用中有关问题的探讨[J]. 污染防治技术,2003(2):13-16.
[8] BOUCHEZ T, PATUREAU D, DABERT P, et al. Ecological study of a bio augmentation failure[J]. Environ Microbiol, 2000(2):179-190.
[9] 刘少敏, 储磊, 朱敬林. 固定化硝化细菌去除生活污水中的氨氮[J]. 环境工程学报,2014(10):4261-4266.
[10] 陈彬. 沸石强化生物脱氮工艺试验研究[D]. 上海:同济大学, 2006.
[11] 沈萍, 陈向东. 微生物学[M]. 北京:高等教育出版社,2006.
[12] 国家环境保护总局水和废水监测分析方法编委会. 水和废水监测分析方法[M]. 4版. 北京:中国环境科学出版社, 2002.
[13] 李运林. 生物沸石填料去除城市污水厂二级出水中氨氮的试验研究[D]. 郑州:郑州大学,2009.
[14] 刘富龙. 氨氮浓度对硝化反应影响的研究[D]. 太原:太原理工大学,2009.
[15] SVEHLA P, JENICEK P, HABART J, et al. Use of the accumulation of nitrite in biological treatment of waste water[J]. Chemicke Listy, 2009, 103(3):255.
[16] CHEN Y, ZHAO Z, PENG Y, et al. Performance of a full-scale modified anaerobic/anoxic/oxic process:Highthroughput sequence analysis of its microbial structures and their community functions[J]. Bioresource Technology, 2016, 220:225-232.
[17] 魏佳明, 崔丽娟, 李伟, 等. 表流湿地细菌群落结构特征[J]. 环境科学. 2016(11):4357-4365.
[18] GUNDERSEN K. Preservation of nitrosomonas[J]. Nature, 1957, 179(4563):789.
[19] MANORU OSHIKI, KAORI SHINYAKO-HATA, HISASHI SATOH, et al. Draft genome sequence of an anaerobic ammonium-oxidizing bacterium, "Candidatus Brocadia sinica"[J]. Genome Announcements, 2015, 3(2):1-2.
[20] DAIMS H, WAGNER M. Nitrospira[J]. Trends in Microbiology, 2018, 26(5):462-463.
文章导航

/