差分方程是计算机代数中一个重要的研究内容,但是目前很少有关于一般非线性差分方程求解方法的研究.受到在非线性微分方程中广泛应用的齐次平衡原则的启发,用其求解大部分非线性差分方程的多项式解.同时,提出了一个新的n阶展开方法,用于求解齐次平衡原则无法求解的情况.结合这两个方法提出了能够找到非线性差分方程所有多项式解的算法.该算法基于Maple实现,实验表明该算法是有效且高效的.
Difference equations are a major aspect of computer algebra; yet, there are currently few studies on solving general nonlinear difference equations. Inspired by the homogeneous balance principle that works well for solving nonlinear differential equations, we use it to find polynomial solutions for a wide range of nonlinear difference equations, in which a new n-order expansion method is proposed to process the powerless cases of the homogeneous balance principle. They are combined together as an algorithm that can be used to find all polynomial solutions of nonlinear difference equations. The algorithm is implemented in Maple, and the experiments show that it is effective and efficient.
[1] ABRAMOV S A. Problems of computer algebra involved in the search for polynomial solutions of linear differential and difference equations[J]. Moscow University Computational Mathematics and Cybernetics, 1989(3):63-68.
[2] ABRAMOV S A. Rational solutions of linear differential and difference equations with polynomial coefficients[J]. USSR Computational Mathematics and Mathematical Physics, 1989, 29(6):7-12. DOI:10.1016/S0041-5553(89)80002-3.
[3] PETKOVŠEK M. Hypergeometric solutions of linear recurrences with polynomial coefficients[J]. Journal of Symbolic Computation, 1992, 14(2/3):243-264.
[4] ABRAMOV S A, PETKOVŠEK M. D'Alembertian solutions of linear differential and difference equations[C]//Proceedings of the International Symposium on Symbolic and Algebraic Computation, 1994:169-174.
[5] HENDRICKS P A, SINGER M F. Solving difference equations in finite terms[J]. Journal of Symbolic Computation, 1999, 27(3):239-259. DOI:10.1006/jsco.1998.0251.
[6] ABRAMOV S A, BRONSTEIN M, PETKOVŠEK M. On polynomial solutions of linear operator equations[C]//Proceedings of the 1995 International Symposium on Symbolic and Algebraic Computation, 1995:290-296.
[7] ABRAMOV S A. Rational solutions of linear difference and q-difference equations with polynomial coefficients[C]//Proceedings of the 1995 International Symposium on Symbolic and Algebraic Computation, 1995:285-289.
[8] ABRAMOV S A, POLYAKOV S. Improved universal denominators[J]. Programming and Computer Software, 2007, 33(3):132-138. DOI:10.1134/S0361768807030024.
[9] ABRAMOV S A, GHEFFAR A, KHMELNOV D. Factorization of polynomials and gcd computations for finding universal denominators[C]//International Workshop on Computer Algebra in Scientific Computing, 2010:4-18.
[10] ABRAMOV S A, GHEFFAR A, KHMELNOV D. Rational solutions of linear difference equations:Universal denominators and denominator bounds[J]. Programming and Computer Software, 2011, 37(2):78-86. DOI:10.1134/S0361768811020022.
[11] ABRAMOV S A, KHMELNOV D. Denominators of rational solutions of linear difference systems of an arbitrary order[J]. Programming and Computer Software, 2012, 38(2):84-91. DOI:10.1134/S0361768812020028.
[12] WANG M. Solitary wave solutions for variant Boussinesq equations[J]. Physics letters A, 1995, 199(3/4):169-172. DOI:10.1016/0375-9601(95)00092-H.
[13] WANG M, ZHOU Y, LI Z. Application of a homogeneous balance method to exact solutions of nonlinear equations in mathematical physics[J]. Physics Letters A, 1996, 216(1/5):67-75.
[14] ZHAO X, WANG L, SUN W. The repeated homogeneous balance method and its applications to nonlinear partial differential equations[J]. Chaos, Solitons & Fractals, 2006, 28(2):448-453.
[15] KHALFALLAH M. New exact traveling wave solutions of the (3+1) dimensional Kadomtsev-Petviashvili (KP) equation[J]. Communications in Nonlinear Science and Numerical Simulation, 2009, 14(4):1169-1175. DOI:10.1016/j.cnsns.2007.11.010.
[16] KHALFALLAH M. Exact traveling wave solutions of the Boussinesq-Burgers equation[J]. Mathematical and Computer Modelling, 2009, 49(3/4):666-671.
[17] RADY A A, OSMAN E, KHALFALLAH M. The homogeneous balance method and its application to the BenjaminBona-Mahoney (BBM) equation[J]. Applied Mathematics and Computation, 2010, 217(4):1385-1390. DOI:10.1016/j.amc.2009.05.027.
[18] NGUYEN L T K. Modified homogeneous balance method:Applications and new solutions[J]. Chaos, Solitons & Fractals, 2015, 73:148-155.
[19] ZHANG Y, LIU Y P, TANG X Y. M-lump solutions to a (3+1)-dimensional nonlinear evolution equation[J]. Computers & Mathematics with Applications, 2018, 76(3):592-601.
[20] ZHANG Y, LIU Y P, TANG X Y. M-lump and interactive solutions to a (3+1)-dimensional nonlinear system[J]. Nonlinear Dynamics, 2018, 93(4):2533-2541. DOI:10.1007/s11071-018-4340-9.
[21] LI Z B, LIU Y P. RATH:A Maple package for finding travelling solitary wave solutions to nonlinear evolution equations[J]. Computer Physics Communications, 2002, 148(2):256-266. DOI:10.1016/S0010-4655(02)00559-3.
[22] LI Z B, LIU Y P. RAEEM:A Maple package for finding a series of exact traveling wave solutions for nonlinear evolution equations[J]. Computer Physics Communications, 2004, 163(3):191-201. DOI:10.1016/j.cpc.2004.08.007.
[23] MAY R M. Simple mathematical models with very complicated dynamics[J]. Nature, 1976, 261:85-93. DOI:10.1038/261459a0.
[24] BITTANTI S, LAUB A J, WILLEMS J C. The Riccati Equation[M]. Berlin:Springer Science & Business Media, 2012.