物理学与电子学

矢量介子协变手征有效场理论研究

  • 王彦 ,
  • 杨继锋
展开
  • 华东师范大学 物理与电子科学学院, 上海 200241

收稿日期: 2019-03-22

  网络出版日期: 2020-01-13

基金资助

国家自然科学基金(11435005)

Study on the covariant chiral effective field theory of vector meson

  • WANG Yan ,
  • YANG Jifeng
Expand
  • School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China

Received date: 2019-03-22

  Online published: 2020-01-13

摘要

在协变形式的手征有效场论中,分析探索了涉及自旋为1的矢量场的圈图计算中保持手征幂次规则的减除方案.着重研究了的含矢量介子内线的Goldstone标量玻色子自能一圈图计算,在矢量场的两种表示下进行了计算分析并得到了一致的结果.计算表明,文献中建议的EOMS[1](Extended On-Mass Shell)可以消除破坏手征幂次规则的贡献;细致分析后发现,破坏手征幂次规则的项都是定域的.由此提出了更简洁的扩展的MS(Extended MS,EMS)方案,并进一步用顶角图计算做了检验.与EOMS相比,该方案仅仅消除破坏手征幂次规则的定域项,对非定域的手征贡献不需做任何修改.这意味着该方案下手征微扰计算的收敛性会更好,更适合作为研究重强子手征有效场理论的方案.

本文引用格式

王彦 , 杨继锋 . 矢量介子协变手征有效场理论研究[J]. 华东师范大学学报(自然科学版), 2020 , 2020(1) : 67 -75 . DOI: 10.3969/j.issn.1000-5641.201922007

Abstract

In this paper, we employ covariant chiral effective field theory to explore the prescriptions in the loops involving spin 1 vector fields. The self-energy diagram for a Goldstone boson containing a vector meson line is studied, and consistent results are obtained in two representations of the vector field. Our calculation shows that the EOMS[1](Extended On-Mass Shell) proposed indeed removes the terms that violate chiral power counting. Closer examination, however, shows that the problematic sources are actually localized; thus, we propose a simpler EMS (extended MS) cheme, which is further validated using a vertex diagram. Compared to EOMS, this scheme eliminates the localized terms that violate chiral power counting without additional manipulation or modification of the non-local terms. This feature would bring about better convergence of the chiral expansion and is more suitable for studying heavy hadrons with chiral effective theory.

参考文献

[1] GEGELIA J, JAPARIDZE G. Matching the heavy particle approach to relativistic theory[J]. Physics Review D, 1999, 60:114038.
[2] PAGELS H. Departures from chiral symmetry[J]. Physica Reports, 1975, 16(5):219-311. DOI:10.1016/0370-1573(75)90039-3.
[3] WEINBERG S. Phenomenological lagrangians[J]. Physica A:Statistical Mechanics and its Applications, 1979, 96:327-340. DOI:10.1016/0378-4371(79)90223-1.
[4] GASSER J, LEUTWYLER H. Chiral perturbation theory to one loop[J]. Annals of Physics, 1984, 158(1):142-210. DOI:10.1016/0003-4916(84)90242-2.
[5] BERNARD V, KAISER N, KAMBOR J, et al. Chiral structure of the nucleon[J]. Nuclear Physics B, 1992, 388(2):315-345. DOI:10.1016/0550-3213(92)90615-I.
[6] JENKINS E, MANOHAR A V. Baryon chiral perturbation theory using a heavy fermion lagrangian[J]. Physics Letters B, 1991, 255(4):558-562. DOI:10.1016/0370-2693(91)90266-S.
[7] ELLIS P J, TANG H B. Pion-nucleon scattering in a new approach to chiral perturbation theory[J]. Physics Review C, 1998, 57(6):3356-3375.
[8] BECHER T, LEUTWYLER H. Baryon chiral perturbation theory in manifestly Lorentz invariant form[J]. The European Physical Journal C, 1999, 9(4):643. DOI:10.1007/PL00021673.
[9] BRUNS P C, MEIßNER U G. Infrared regularization for spin-1 fields[J]. The European Physical Journal C, 2005, 40(1):97-119. DOI:10.1140/epjc/s2005-02118-0.
[10] 温莉宏. 强子结构的协变手征有效理论分析[D]. 上海:华东师范大学, 2017.
[11] YANG J F. Anomalous "mapping" between pionfull and pionless EFT's[J]. Modern Physics Letters A, 2014, 29:1450043.
[12] ECKER G, GASSER J, LEUTWYLER H, et al. The role of resonances in chiral perturbation theory[J]. Nuclear Physics B, 1989, 321(2):311-342. DOI:10.1016/0550-3213(89)90346-5.
文章导航

/