物理学与电子学

新型聚合物半导体薄膜及其场效应晶体管的研究

  • 叶建春 ,
  • 周礼照 ,
  • 李文武 ,
  • 欧阳威
展开
  • 1. 华东师范大学 物理与电子科学学院 纳光电集成与先进装备教育部工程研究中心, 上海 200062;
    2. 华东师范大学 物理与电子科学学院 极化材料与器件教育部重点实验室, 上海 200241

收稿日期: 2019-03-19

  网络出版日期: 2020-01-13

基金资助

国家自然科学基金(61504042,61771198);上海市自然科学基金(17ZR1447000);中央高校基本科研业务费专项资金(40500-20101-222092)

Novel polymer semiconductor films and related field effect transistor devices

  • YE Jianchun ,
  • ZHOU Lizhao ,
  • LI Wenwu ,
  • OU-YANG Wei
Expand
  • 1. Engineering Research Center for Nanophotonics and Advanced Instrument, Ministry of Education, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China;
    2. Key Laboratory of Polar Materials and Devicesn, Ministry of Education, School of Physics and Electronic Science, East China Normal University, Shanghai 200241

Received date: 2019-03-19

  Online published: 2020-01-13

摘要

以新型的有机聚合物半导体(DPPTTT (poly (3,6-di (2-thien-5-yl)-2,5-di (2-octyldodecyl)-pyrrolo[3,4-c]pyrrole-1,4-dione) thieno[3,2-b]thiophene))为研究对象,利用溶液法制备了有机半导体薄膜并进行了一系列表征.发现半导体薄膜的厚度、表面粗糙度和拉曼峰强度均随溶液浓度和转速呈规律性变化.以该材料作为半导体活性层制备了p型有机场效应晶体管,发现当沟道长度降低到50 μm时,器件的有效载流子迁移率最高,达到0.12 cm2/Vs;同时观察到随着沟道长度的降低,载流子迁移率与阈值电压都有增大的趋势,这与普遍观察到的短沟道效应相反.这些研究内容或许可以为更好地理解有机场效应晶体管及器件物理提供新的观点.

本文引用格式

叶建春 , 周礼照 , 李文武 , 欧阳威 . 新型聚合物半导体薄膜及其场效应晶体管的研究[J]. 华东师范大学学报(自然科学版), 2020 , 2020(1) : 83 -92 . DOI: 10.3969/j.issn.1000-5641.201922006

Abstract

Thin films using a novel organic polymer semiconductor (DPPTTT(poly(3,6-di(2-thien-5-yl)-2,5-di(2-octyldodecyl)-pyrrolo[3,4-c]pyrrole-1,4-dione) thieno [3,2-b] thiophene)) were prepared by a solution process and characterized through different techniques. It was found that the thickness, surface roughness, and Raman peak strength of the semiconductor films changed with the solution concentration and rotation rate. The polymer semiconductor was used to prepare the active layer for p-type organic field effect transistors; with these, the influence of channel length on critical transistor parameters (i.e., carrier mobility and threshold voltage) was studied. It was found that the effective carrier mobility was the highest at 0.12 cm2/Vs when the channel length was reduced to 50 μm. With a decrease in channel length, both carrier mobility and threshold voltage tended to increase, which was contrary to the short channel effect. This paper may provide new perspectives for better understanding the physics of field effect transistor devices.

参考文献

[1] OU-YANG W, WEIS M, LEE K,et al. Function of interfacial dipole monolayer in organic field effect transistors[J]. Japanese Journal of Applied Physics, 2011, 50(4S):04DK10-6. DOI:10.7567/JJAP.50.04DK10.
[2] CHEN M, ZHU Y N,YAO C,et al. Intrinsic charge carrier mobility in single-crystal OFET by "fast trapping vs. slow detrapping" model[J]. Organic Electronics, 2018, 54:237-244. DOI:10.1016/j.orgel.2017.12.042.
[3] JI J J, ZHOU D G,TANG Y,et al. Partially removing long branched alkyl side chains of regioregular conjugated backbone based diketopyrrolopyrrole polymer for improving field-effect mobility[J]. Journal of Materials Chemistry C, 2018, 6:13325-13330. DOI:10.1039/C8TC04954H.
[4] OU-YANG W, WEIS M,TAGUCHI D,et al. Modeling of threshold voltage in pentacene organic field-effect transistors[J]. Journal of Applied Physics, 2010, 107(12):124506. DOI:10.1063/1.3449078.
[5] WANG R, GUO Y K,ZHANG D,et al. Improved electron transport with reduced contact resistance in N-doped polymer field-effect transistors with a dimeric dopant[J]. Macromol. Rapid Commun, 2018, 39(14):1700726. DOI:10.1002/marc.201700726.
[6] TEIXEIRA DA ROCHA C, HAASE K,ZHENG Y C,et al. Solution Coating of Small Molecule/Polymer Blends Enabling Ultralow Voltage and High-Mobility Organic Transistors[J]. Adv Electron Mater, 2018, 4(8):1800141. DOI:10.1002/aelm.201800141.
[7] OU-YANG W, WEIS M,MANAKA T,et al. Effect of an upward and downward interface dipole langmuir-blodgett monolayer on pentacene organic field-effect transistors:A comparison study[J]. Japanese Journal of Applied Physics, 2012, 51(2R):024102-5. DOI:10.7567/JJAP.51.024102.
[8] THUAU D, ABBAS M, WANTZ G, et al. Mechanical strain induced changes in electrical characteristics of flexible, non-volatile ferroelectric OFET based memory[J]. Organic Electronics, 2017, 40:30-35. DOI:10.1016/j.orgel.2016.10.036.
[9] GAO X, DUAN S M, LI J F,et al. Deposition rate related DPA OFET threshold voltage shift and hysteresis variation[J]. Journal of Materials Chemistry C, 2018, 6:12498-12502. DOI:10.1039/C8TC05327H.
[10] NAKAYAMA K, OU-YANG W,UNO M,et al. Flexible air-stable three-dimensional polymer field-effect transistors with high output current density[J]. Organic Electronics, 2013, 14:2908-2915. DOI:10.1016/j.orgel.2013.08.002.
[11] LI J, OU-YANG W, WEIS M, et al. Electric-field enhanced thermionic emission model for carrier injection mechanism of organic field-effect transistors:understanding of contact resistance[J]. Journal of Physics D:Applied Physics , 2017, 50(2):035101. DOI:10.1088/1361-6463/aa4e95.
[12] UEMURA T, ROLIN C, KE T H, et al. On the extraction of charge carrier mobility in high-mobility organic transistors[J]. Advanced Materials, 2016, 28(1):151-155. DOI:10.1002/adma.201503133.
[13] CHOI H H, CHO K, SIRRINGHAUS H, et al. Critical assessment of charge mobility extraction in FETs[J]. Nature materials, 2018, 17(1):2-7. DOI:10.1038/nmat5035.
[14] NIKOLKA M, NASRALLAH I, ROSE B, et al. High operational and environmental stability of high-mobility conjugated polymer field-effect transistors through the use of molecular additives[J]. Nature Mater, 2017, 16:356-361. DOI:10.1038/nmat4785.
[15] FARAJI S, DANESH E, TATE D J, et al. Cyanoethyl cellulose-based nanocomposite dielectric for low-voltage, solution-processed organic field-effect transistors (OFETs)[J]. Journal of Physics D:Applied Physics, 2016, 49(18):185102.
[16] ZHANG W M, SMITH J, WATKINS S E, et al. Indacenodithiophene semiconducting polymers for high-performance, air-stable transistors[J]. Journal of the American Chemical Society, 2010, 132(33):11437-11439. DOI:10.1021/ja1049324.
[17] NIKOLKA M, SCHWEICHER G, ARMITAGE J, et al. Performance improvements in conjugated polymer devices by removal of water-induced traps[J]. Advanced Materials, 2018, 30(36):1801874. DOI:10.1002/adma.201801874.
[18] LI Y N, SINGH S P, SONAR P. A high mobility P-type DPP-thieno[3,2-b]thiophene copolymer for organic thin-film transistors[J]. Advanced Materials, 2010, 22(43):4862-4866. DOI:10.1002/adma.201002313.
[19] ZHOU N J, VEGIRAJU S, YU X G, et al. Diketopyrrolopyrrole (DPP) functionalized tetrathienothiophene (TTA) small molecules for organic thin film transistors and photovoltaic cells[J]. Journal of Materials Chemistry C, 2015, 3(34):8932-8941. DOI:10.1039/C5TC01348H.
[20] LI Y N, SONAR P, MURPHY L, et al. High mobility diketopyrrolopyrrole (DPP)-based organic semiconductor materials for organic thin film transistors and photovoltaics[J]. Energy & Environmental Science, 2013, 6:1684-1710. DOI:10.1039/c3ee00015j.
[21] COUTO R, CHAMBON S, AYMONIER C, et al. Microfluidic supercritical antisolvent continuous processing and direct spray-coating of poly-(3-hexylthiophene) nanoparticles for OFET devices[J]. Chemical Communications, 2015, 51(6):1008-1011. DOI:10.1039/C4CC07878K.
[22] CHIANESE F, CANDINI A, AFFRONTE M, et al. Linear conduction in N-type organic field effect transistors with nanometric channel lengths and graphene as electrodes[J]. Applied Physics Letters, 2018, 112(21):213301. DOI:10.1063/1.5023659.
[23] VASIMALLA S, SUBBARAO N V V, GEDDA M, et al. Effects of dielectric material, HMDS layer, and channel length on the performance of the perylenediimide-based organic field-effect transistors[J]. ACS Omega, 2017, 2:2552-2560. DOI:10.1021/acsomega.7b00374.
[24] LEOBANDUNG E, GU J, GUO L J,et al. Wire-channel and wrap-around-gate metal-oxide-semiconductor field-effect transistors with a significant reduction of short channel effects[J]. Journal of Vacuum Science Technology B:Microelectronics and Nanometer Structures, 1997, 15(6):2791-2794. DOI:10.1116/1.589729.
[25] RAY B, MAHAPATRA S. Modeling of Channel Potential and Subthreshold Slope of Symmetric double-gate transistor[J]. IEEE Transactions on Electron Devices, 2009, 56(2):260-264. DOI:10.1109/TED.2008.2010577.
[26] PRETET J, MONFRAY S, CRISTOLOVEANU S,et al. Silicon-on-nothing MOSFETs:Performance, short-channel effects, and backgate coupling[J]. IEEE Transactions on Electron Devices, 2004, 51(2):240-244. DOI:10.1109/TED.2003.822226.
[27] HU Y Y, LI G D, CHEN Z J. The importance of contact resistance in high-mobility organic field-effect transistors studied by scanning kelvin probe microscopy[J]. IEEE Electron Device Letters, 2018, 39(2):276-279. DOI:10.1109/LED.2017.2781301.
[28] CHOI S, FUENTES-HERNANDEZ C,WANG C Y,et al. A Study on reducing contact resistance in solution-processed organic field-effect transistors[J]. ACS Applied Material and Interfaces, 2016, 8(37):24744-24752. DOI:10.1021/acsami.6b07029.
[29] WADA H, SHIBATA K, BANDO Y,et al. Contact resistance and electrode material dependence of air-stable n-channel organic field-effect transistors using dimethyldicyanoquinonediimine (DMDCNQI)[J]. Journal of Materials Chemistry, 2008, 18(35):4165-4171. DOI:10.1039/b808435a.
[30] OU-YANG W, MANAKA T, NAITOU S,et al. Optical second-harmonic generation in hydrogenated amorphous silicon single-and double-junction solar cells[J]. Japanese Journal of Applied Physics, 2012, 51(7R):070209-.
[31] OU-YANG W, MITOMA N,KIZU T,et al. Controllable film densification and interface flatness for high-performance amorphous indium oxide based thin film transistors[J]. Applied Physics Letters, 2014, 105(16):163503. DOI:10.1063/1.4898815.
[32] RAJEEV K P, OPOKU C,STOLOJAN V,et al. Effect of nanowire-dielectric interface on the hysteresis of solution processed silicon nanowire FETs[J]. Nanoscience and Nanoengineering, 2017, 5(2):17-24. DOI:10.13189/nn.2017.050201.
[33] HEKMATSHOAR B. Thin-film silicon heterojunction FETs for large area and flexible electronics:Design parameters and reliability[J]. IEEE Transactions on Electron Devices, 2015, 62(11):3524-3529. DOI:11.1109/TED.2015.2463721.
[34] GAO X, LIN M M,MAO B H,et al. Correlation between active layer thickness and ambient gas stability in IGZO thin-film transistors[J]. Journal of Physics D:Applied Physics, 2017, 50(2):025102. DOI:10.1088/1361-6463/50/2/025102.
[35] MITOMA N, AIKAWA S,OU-YANG W,et al. Dopant selection for control of charge carrier density and mobility in amorphous indium oxide thin-film transistors:Comparison between Si-and W-dopants[J]. Applied Physics Letters, 2015, 106(4):042106. DOI:10.1063/1.4907285.
[36] LIN M F, GAO X, MITOMA N,et al. Reduction of the interfacial trap density of indium-oxide thin film transistors by incorporation of hafnium and annealing process[J]. AIP Advances, 2015, 5(1):017116. DOI:10.1063/1.4905903.
[37] SALYK O, VYŇUCHAL J,HORÁČKOVÁ P,et al. Structure and Raman spectra of pyridyl substituted diketo-pyrrolo-pyrrole isomers and polymorphs[J]. Journal of Molecular Structure, 2010, 983(1/2/3):39-47. DOI:10.1016/j.molstruc.2010.08.026.
[38] CALVO-CASTRO J, WARZECHA M,MCLEAN A J,et al. Impact of substituent effects on the Raman spectra of structurally related N-substituted diketopyrrolopyrroles[J]. Vibrational Spectroscopy, 2016, 83:8-16. DOI:10.1016/j.vibspec.2015.12.004.
[39] YANG J W, FOSSUM J G. On the feasibility of nanoscale triple-gate CMOS transistors[J]. IEEE Transactions on Electron Devices, 2005, 52(6):1159-1163. DOI:10.1109/TED.2005.848109.
[40] MATSUMOTO T, OU-YANG W,MIYAKE K,et al. Study of contact resistance of high-mobility organic transistors through comparison[J]. Organic Electronics, 2013, 14(10):2590-2595. DOI:10.1016/j.orgel.2013.06.032.
[41] OU-YANG W, UEMURA T, MIYAKE K, et al. High-performance organic transistors with high-k dielectrics:A comparative study on solution-processed single crystals and vacuum-deposited polycrystalline films of 2,9-didecyl-dinaphtho[2,3-b:2',3'-f]thieno[3,2-b]thiophene[J]. Applied Physics Letters, 2012, 101(16):223304. DOI:10.1063/1.4769436.
文章导航

/