Photocatalytic fuel cell (PFC) technology is a combination of photocatalytic technology and fuel cell technology, which can degrade wastewater and generate electricity at the same time. The influence of the preparation process for photoanodes of TiO2 Nanotube Arrays (TNAs) on its morphology and structure was explored; a positive correlation between the electrolysis time and the tube length of TNAs was confirmed by a Field Emission Scanning Electron Microscope (FESEM). We can combine TNAs with Cu2O photoelectrodes to obtain a system with stronger photocatalytic activity, confirming the existence of a PFC synergistic effect. The optimal electrolysis process was 4 h, and the photocatalytic degradation rate of the electrode prepared by this process was more than 79% within 2 h. Analysis of the three standards showed an excellent linear correlation between the photocurrent of PFC and the chemical oxygen demand (COD); as the degradation proceeds, the mass transfer process is reduced and the correlation between the two is weakened.
[1] GRATZEL M. Photoelectrochemical cells[J]. Nature, 1983, 414(6861):338-344.
[2] ANTONIADOU M, KONDARIDES D I, LABOU D, et al. An efficient photoelectrochemical cell functioning in the presence of organic wastes[J]. Solar Energy Materials & Solar Cells, 2010, 94(3):592-597.
[3] ANTONIADOU M, KONDARIDES D I, DIONYSIOU D D, et al. Quantum dot sensitized titania applicable as photoanode in photoactivated fuel cells[J]. Journal of Physical Chemistry C, 2012, 116(32):16901-16909. DOI:10.1021/jp305098m.
[4] LIU Y, LI J, ZHOU B, et al. Photoelectrocatalytic degradation of refractory organic compounds enhanced by a photocatalytic fuel cell[J]. Applied Catalysis B Environmental, 2012, 111(6):485-491.
[5] LIU Y, LI J, ZHOU B, et al. Efficient electricity production and simultaneously wastewater treatment via a high-performance photocatalytic fuel cell[J]. Water Research, 2011, 45(13):3991-3998. DOI:10.1016/j.watres.2011.05.004.
[6] XIA L, JING B, LI J, et al. A highly efficient BiVO4/WO3/W heterojunction photoanode for visible-light responsive dual photoelectrode photocatalytic fuel cell[J]. Applied Catalysis B Environmental, 2016, 183:224-230. DOI:10.1016/j.apcatb.2015.10.050.
[7] LIAO Q, LI L, CHEN R, et al. Respective electrode potential characteristics of photocatalytic fuel cell with visible-light responsive photoanode and air-breathing cathode[J]. International Journal of Hydrogen Energy, 2015, 40(46):16547-16555.
[8] JENNY S, MASAYA M, MASATO T, et al. Understanding TiO2 photocatalysis:mechanisms and materials[J]. Chemical Reviews, 2014, 114(19):9919-9986. DOI:10.1021/cr5001892.
[9] TANG X H, LI D Y. Evaluation of asphaltene degradation on highly ordered TiO2 nanotubular arrays via variations in wettability[J]. Langmuir:the ACS Journal of Surfaces and Colloids, 2011, 27(3):1218-1223.
[10] CARNEIRO J T, SAVENIJE T J, MOULIJN J A, et al. Toward a physically sound structure-activity relationship of TiO2-based photocatalysts[J]. Journal of Physical Chemistry C, 2010, 114(1):327-332. DOI:10.1021/jp906395w.
[11] KUANG D, BRILLET J, CHEN P, et al. Application of highly ordered TiO2 nanotube arrays in flexible dye-sensitized solar cells[J]. ACS Nano, 2008, 2(6):1113-1116. DOI:10.1021/nn800174y.
[12] ALBU S P, GHICOV A, MACAK J M, et al. Self-organized, free-standing TiO2 nanotube membrane for flow-through photocatalytic applications[J]. Nano Letters, 2007, 7(5):1286-1289. DOI:10.1021/nl070264k.
[13] HISATOMI T, KUBOTA J, DOMEN K. Cheminform abstract:Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting[J]. Cheminform, 2014, 43(22):7520-7535.
[14] LI B, CAO H, GUI Y, et al. Cu2O@reduced graphene oxide composite for removal of contaminants from water and supercapacitors[J]. Journal of Materials Chemistry, 2011, 21(29):10645-10648. DOI:10.1039/c1jm12135a.
[15] MCSHANE C M, CHOI K S. Photocurrent enhancement of n-type Cu2O electrodes achieved by controlling dendritic branching growth[J]. Journal of the American Chemical Society, 2013, 131(7):2561-2569.
[16] DOMINI C E, HIDALGO M, MARKEN F,et al. Comparison of three optimized digestion methods for rapid determination of chemical oxygen demand:Closed microwaves, open microwaves and ultrasound irradiation[J]. Analytica Chimica Acta, 2006, 569(1):275-276.
[17] ZHAO H, JIANG D, ZHANG S, et al. Development of a direct photoelectrochemical method for determination of chemical oxygen demand[J]. Analytical Chemistry, 2004, 76(1):155-160.
[18] LIU Z, ZHANG X, NISHIMOTO S, et al. Highly Ordered TiO2 Nanotube Arrays with Controllable Length for Photoelectrocatalytic Degradation of Phenol[J]. The Journal of Physical Chemistry C, 2008, 112(1):253-259. DOI:10.1021/jp0772732.
[19] HOU X, WANG C W, ZHU W D,et al. Preparation of nitrogen-doped anatase TiO2 nanoworm/nanotube hierarchical structures and its photocatalytic effect[J]. Solid State Sciences, 2014, 29(3):27-33.
[20] ZHOU Z Y, WU Z Y, XU Q J, et al. A solar-charged photoelectrochemical wastewater fuel cell for efficient and sustainable hydrogen production[J]. Journal of Materials Chemistry A, 2017, 5:25450-25459.
[21] LIU L, CHEN X. Titanium Dioxide Nanomaterials:Self-Structural Modifications[J]. Chemical Reviews, 2014, 114(19):9890-9918. DOI:10.1021/cr400624r.
[22] KUMAR S G, RAO K S R K. Comparison of modification strategies towards enhanced charge carrier separation and photocatalytic degradation activity of metal oxide semiconductors (TiO2, WO3 and ZnO)[J]. Applied Surface Science, 2017, 391:124-148. DOI:10.1016/j.apsusc.2016.07.081.
[23] FUJISHIMA A, ZHANG X, TRYK D A. TiO photocatalysis and related surface phenomena[J]. Surface Science Reports, 2008, 63(12):515-582. DOI:10.1016/j.surfrep.2008.10.001.
[24] YING D W, CAO R Q, LI C J, et al. Study of the photocurrent in a photocatalytic fuel cell for wastewater treatment and the effects of TiO2 surface morphology to the apportionment of the photocurrent[J]. Electrochimica Acta, 2016, 192:319-327. DOI:10.1016/j.electacta.2016.01.210.
[25] LIAO Q, LI L, CHEN R, et al. Respective electrode potential characteristics of photocatalytic fuel cell with visible-light responsive photoanode and air-breathing cathode[J]. International Journal of Hydrogen Energy, 2015, 40(46):16547-16555. DOI:10.1016/j.ijhydene.2015.10.002.
[26] PROIETTI E, JAOUEN F, LEFÈVRE M, et al. Iron-based cathode catalyst with enhanced power density in polymer electrolyte membrane fuel cells[J]. Nature Communications, 2011, 2:Article number 416. DOI:10.1038/ncomms1427.