物理学与电子学

TiO2纳米管阵列双极光催化燃料电池的应用研究

  • 王剑桥 ,
  • 刘冬 ,
  • 周君 ,
  • 席清华 ,
  • 聂耳 ,
  • 孙卓
展开
  • 华东师范大学 物理与电子科学学院 纳光电集成与先进装备教育部工程研究中心, 上海 200062

收稿日期: 2019-03-18

  网络出版日期: 2020-01-13

基金资助

上海浦东新区科技发展基金(PKJ2015-C10);上海市闵行区科技项目(2016MH279)

Application of TiO2 nanotube arrays for bipolar photocatalytic fuel cells

  • WANG Jianqiao ,
  • LIU dong ,
  • ZHOU Jun ,
  • XI Qinghua ,
  • NIE Er ,
  • SUN Zhuo
Expand
  • Engineering Research Center for Nanophotonics and Advanced Instrument, Ministry of Education, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China

Received date: 2019-03-18

  Online published: 2020-01-13

摘要

光催化燃料电池技术(Photocatalytic Fuel Cell,PFC)结合了光催化技术与燃料电池技术,可以同时进行降解废水与发电,对污水处理具有重要意义.探索了TiO2纳米管阵列(TiO2 Nanotubes Arrays,TNAs)光阳极制备工艺对其形貌结构的影响;通过扫描电子显微镜(Field Emission Scanning Electron Microscope,FESEM)证实了电解时间与TNAs管长正相关;与Cu2O光阴极组合得到的具有更强光催化活性系统证实了PFC协同效应的存在,最佳的电解工艺为4 h,该工艺制备的电极对双氯酚酸光催化降解率在2 h内为79%;对3种标准物的分析说明,在较高的浓度范围内,通过PFC外电路的净电荷量与化学需氧量(Chemical Oxygen Demand,COD)线性相关,而随着降解进行,传质过程减弱,两者之间的相关性减弱.

本文引用格式

王剑桥 , 刘冬 , 周君 , 席清华 , 聂耳 , 孙卓 . TiO2纳米管阵列双极光催化燃料电池的应用研究[J]. 华东师范大学学报(自然科学版), 2020 , 2020(1) : 93 -102 . DOI: 10.3969/j.issn.1000-5641.201922005

Abstract

Photocatalytic fuel cell (PFC) technology is a combination of photocatalytic technology and fuel cell technology, which can degrade wastewater and generate electricity at the same time. The influence of the preparation process for photoanodes of TiO2 Nanotube Arrays (TNAs) on its morphology and structure was explored; a positive correlation between the electrolysis time and the tube length of TNAs was confirmed by a Field Emission Scanning Electron Microscope (FESEM). We can combine TNAs with Cu2O photoelectrodes to obtain a system with stronger photocatalytic activity, confirming the existence of a PFC synergistic effect. The optimal electrolysis process was 4 h, and the photocatalytic degradation rate of the electrode prepared by this process was more than 79% within 2 h. Analysis of the three standards showed an excellent linear correlation between the photocurrent of PFC and the chemical oxygen demand (COD); as the degradation proceeds, the mass transfer process is reduced and the correlation between the two is weakened.

参考文献

[1] GRATZEL M. Photoelectrochemical cells[J]. Nature, 1983, 414(6861):338-344.
[2] ANTONIADOU M, KONDARIDES D I, LABOU D, et al. An efficient photoelectrochemical cell functioning in the presence of organic wastes[J]. Solar Energy Materials & Solar Cells, 2010, 94(3):592-597.
[3] ANTONIADOU M, KONDARIDES D I, DIONYSIOU D D, et al. Quantum dot sensitized titania applicable as photoanode in photoactivated fuel cells[J]. Journal of Physical Chemistry C, 2012, 116(32):16901-16909. DOI:10.1021/jp305098m.
[4] LIU Y, LI J, ZHOU B, et al. Photoelectrocatalytic degradation of refractory organic compounds enhanced by a photocatalytic fuel cell[J]. Applied Catalysis B Environmental, 2012, 111(6):485-491.
[5] LIU Y, LI J, ZHOU B, et al. Efficient electricity production and simultaneously wastewater treatment via a high-performance photocatalytic fuel cell[J]. Water Research, 2011, 45(13):3991-3998. DOI:10.1016/j.watres.2011.05.004.
[6] XIA L, JING B, LI J, et al. A highly efficient BiVO4/WO3/W heterojunction photoanode for visible-light responsive dual photoelectrode photocatalytic fuel cell[J]. Applied Catalysis B Environmental, 2016, 183:224-230. DOI:10.1016/j.apcatb.2015.10.050.
[7] LIAO Q, LI L, CHEN R, et al. Respective electrode potential characteristics of photocatalytic fuel cell with visible-light responsive photoanode and air-breathing cathode[J]. International Journal of Hydrogen Energy, 2015, 40(46):16547-16555.
[8] JENNY S, MASAYA M, MASATO T, et al. Understanding TiO2 photocatalysis:mechanisms and materials[J]. Chemical Reviews, 2014, 114(19):9919-9986. DOI:10.1021/cr5001892.
[9] TANG X H, LI D Y. Evaluation of asphaltene degradation on highly ordered TiO2 nanotubular arrays via variations in wettability[J]. Langmuir:the ACS Journal of Surfaces and Colloids, 2011, 27(3):1218-1223.
[10] CARNEIRO J T, SAVENIJE T J, MOULIJN J A, et al. Toward a physically sound structure-activity relationship of TiO2-based photocatalysts[J]. Journal of Physical Chemistry C, 2010, 114(1):327-332. DOI:10.1021/jp906395w.
[11] KUANG D, BRILLET J, CHEN P, et al. Application of highly ordered TiO2 nanotube arrays in flexible dye-sensitized solar cells[J]. ACS Nano, 2008, 2(6):1113-1116. DOI:10.1021/nn800174y.
[12] ALBU S P, GHICOV A, MACAK J M, et al. Self-organized, free-standing TiO2 nanotube membrane for flow-through photocatalytic applications[J]. Nano Letters, 2007, 7(5):1286-1289. DOI:10.1021/nl070264k.
[13] HISATOMI T, KUBOTA J, DOMEN K. Cheminform abstract:Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting[J]. Cheminform, 2014, 43(22):7520-7535.
[14] LI B, CAO H, GUI Y, et al. Cu2O@reduced graphene oxide composite for removal of contaminants from water and supercapacitors[J]. Journal of Materials Chemistry, 2011, 21(29):10645-10648. DOI:10.1039/c1jm12135a.
[15] MCSHANE C M, CHOI K S. Photocurrent enhancement of n-type Cu2O electrodes achieved by controlling dendritic branching growth[J]. Journal of the American Chemical Society, 2013, 131(7):2561-2569.
[16] DOMINI C E, HIDALGO M, MARKEN F,et al. Comparison of three optimized digestion methods for rapid determination of chemical oxygen demand:Closed microwaves, open microwaves and ultrasound irradiation[J]. Analytica Chimica Acta, 2006, 569(1):275-276.
[17] ZHAO H, JIANG D, ZHANG S, et al. Development of a direct photoelectrochemical method for determination of chemical oxygen demand[J]. Analytical Chemistry, 2004, 76(1):155-160.
[18] LIU Z, ZHANG X, NISHIMOTO S, et al. Highly Ordered TiO2 Nanotube Arrays with Controllable Length for Photoelectrocatalytic Degradation of Phenol[J]. The Journal of Physical Chemistry C, 2008, 112(1):253-259. DOI:10.1021/jp0772732.
[19] HOU X, WANG C W, ZHU W D,et al. Preparation of nitrogen-doped anatase TiO2 nanoworm/nanotube hierarchical structures and its photocatalytic effect[J]. Solid State Sciences, 2014, 29(3):27-33.
[20] ZHOU Z Y, WU Z Y, XU Q J, et al. A solar-charged photoelectrochemical wastewater fuel cell for efficient and sustainable hydrogen production[J]. Journal of Materials Chemistry A, 2017, 5:25450-25459.
[21] LIU L, CHEN X. Titanium Dioxide Nanomaterials:Self-Structural Modifications[J]. Chemical Reviews, 2014, 114(19):9890-9918. DOI:10.1021/cr400624r.
[22] KUMAR S G, RAO K S R K. Comparison of modification strategies towards enhanced charge carrier separation and photocatalytic degradation activity of metal oxide semiconductors (TiO2, WO3 and ZnO)[J]. Applied Surface Science, 2017, 391:124-148. DOI:10.1016/j.apsusc.2016.07.081.
[23] FUJISHIMA A, ZHANG X, TRYK D A. TiO photocatalysis and related surface phenomena[J]. Surface Science Reports, 2008, 63(12):515-582. DOI:10.1016/j.surfrep.2008.10.001.
[24] YING D W, CAO R Q, LI C J, et al. Study of the photocurrent in a photocatalytic fuel cell for wastewater treatment and the effects of TiO2 surface morphology to the apportionment of the photocurrent[J]. Electrochimica Acta, 2016, 192:319-327. DOI:10.1016/j.electacta.2016.01.210.
[25] LIAO Q, LI L, CHEN R, et al. Respective electrode potential characteristics of photocatalytic fuel cell with visible-light responsive photoanode and air-breathing cathode[J]. International Journal of Hydrogen Energy, 2015, 40(46):16547-16555. DOI:10.1016/j.ijhydene.2015.10.002.
[26] PROIETTI E, JAOUEN F, LEFÈVRE M, et al. Iron-based cathode catalyst with enhanced power density in polymer electrolyte membrane fuel cells[J]. Nature Communications, 2011, 2:Article number 416. DOI:10.1038/ncomms1427.
文章导航

/