雅砻江、岷江、嘉陵江和乌江的水沙特性是决定长江泥沙变异的关键因素之一,关乎三峡水库的合理运行,关系着长江流域水资源的合理开发利用及水生态平衡.本文基于2002—2016年期间,长江主要支流设置的桐子林、高场、北碚、武隆4所重要控制性水文站水文泥沙监测资料,深入系统地探讨水文泥沙参量的变化特征及其影响因素,借助统计软件SPSS进一步分析水文泥沙参量的相关性.研究结果表明:在时序上,各支流年均含沙量、年输沙量、年输沙模数降低22.57%~91.54%,年径流量雅砻江、岷江和乌江增大3.28%~17.96%,嘉陵江降低1.58%;嘉陵江和乌江的中值粒径增大50%~80%.水电站的修建导致年均含沙量、年输沙量、中值粒径、年输沙模数降低5%~79.34%;强降雨、滑坡、塌方、泥石流、溃坝等自然灾害以及人为诱发滑坡和向河道倾倒土石体致使年均含沙量、年输沙量、年输沙模数增大20%~702.94%.参数间相关性由强到弱排序为年均含沙量和年输沙量/年输沙模数,年径流量和年均含沙量,年径流量和年输沙量/年输沙模数,年均含沙量和中值粒径,中值粒径和年输沙量/年输沙模数,以及年径流量和中值粒径.研究成果将为长江支流梯级电站的规划设计、三峡水库的合理运行提供理论支撑.
Water and sediment characteristics of Yalong River, Minjiang River, Jialing River, and Wujiang River are one of the defining aspects of variation in Yangtze River sediment; they have influence on the operation of the Three Gorges Reservoir, which is related to utilization of water resources in the Yangtze River Valley and equilibrium of the water ecosystem. This article is based on hydrological and sediment monitoring data from 2002—2016 of four important hydrological control stations set up in the main tributaries of the Yangtze River, which are Tongzilin, Gaochang, Beibei, and Wulong. Variation characteristics of hydrology and sediment parameters and their associated influence factors were studied systematically; correlations between hydrological and sediment parameters were subsequently analyzed by SPSS. The results showed that over time: the annual average sediment concentration, annual sediment load, and modulus of sediment transport of the tributaries of the Yangtze River decreased 22.57%~91.54%; the annual runoff of Yalong River, Minjiang River, and Wujiang River increased 3.28%~17.96%, but that of Jialing River decreased 1.58%; and the median size of sediment of the Jialing and Wujiang Rivers increased 50%~80%. Furthermore, cascade hydro power stations were built, which led to annual average sediment concentration, annual sediment load, median size of sediment, and modulus of sediment transport to decrease by 5%~79.34%. Natural disasters such us heavy rainfall, landslide, collapse, debris flow, dam-break, landslide under artificial conditions, and dumping earth rock into a river lead to annual average sediment concentration, annual sediment load, and modulus of sediment transport to increase by 20%~702.94%. Correlations between the parameters ranked from strong to weak are: annual average sediment concentration and annual sediment load/annual average sediment transport modulus, annual runoff and annual average sediment concentration, annual runoff and annual sediment load/annual average sediment transport modulus, annual average sediment concentration and median size of sediment, median size of sediment and annual sediment load/annual average sediment transport modulus, and annual runoff and median size of sediment. The research results will provide theoretical support for the planning and design of cascade hydropower stations in tributaries of the Yangtze River as well as operation of the Three Gorges Reservoir.
[1] CHEN J, FINLAYSON B L, WEI T, et al. Changes in monthly flows in the Yangtze River, China:With special reference to the Three Gorges Dam[J]. Journal of Hydrology, 2016, 536:293-301. DOI:10.1016/j.jhydrol.2016.03.008.
[2] JIA D D, SHAO X J, ZHANG X N, et al. Sedimentation patterns of fine-grained particles in the dam area of the Three Gorges Project:3D numerical simulation[J]. Journal of Hydraulic Engineering, 2013, 139(6):669-674. DOI:10.1061/(ASCE)HY.1943-7900.0000709.
[3] WANG Y, RHOADS B L, WANG D, et al. Impacts of large dams on the complexity of suspended sediment dynamics in the Yangtze River[J]. Journal of Hydrology, 2018, 558:184-195. DOI:10.1016/j.jhydrol.2018.01.027.
[4] 李纯龙. 长江上游大规模水库群综合运用联合优化调度研究[D]. 武汉:华中科技大学, 2016.
[5] 吴楠, 苏德毕力格, 高吉喜, 等. 基于格局和过程的流域生态系统减轻入库泥沙服务及价值——以雅砻江二滩水库为例[J]. 中国环境科学, 2011, 31(10):1751-1760
[6] 张启东. 岷江上游水沙变化与森林破坏的关系研究[D]. 重庆:西南大学, 2006.
[7] 李健, 杨文俊, 金中武. 泥沙颗粒分析法在岷江下游河段河床质分析中的应用[J]. 长江科学院院报, 2014, 31(4):1-5. DOI:10.3969/j.issn.1001-5485.2014.04.001
[8] 张信宝, 文安邦. 长江上游干流和支流河流泥沙近期变化及其原因[J]. 水利学报, 2002, 33(4):56-59. DOI:10.3321/j.issn:0559-9350.2002.04.011
[9] 许炯心. 长江上游干支流的水沙变化及其与森林破坏的关系[J]. 水利学报, 2000, 31(1):72-80. DOI:10.3321/j.issn:0559-9350.2000.01.013
[10] 许全喜, 陈松生, 熊明, 等. 嘉陵江流域水沙变化特性及原因分析[J]. 泥沙研究, 2008(2):1-8. DOI:10.3321/j.issn:0468-155X.2008.02.001
[11] 张信宝, 文安邦, WALLING D E, 等. 大型水库对长江上游主要干支流河流输沙量的影响[J]. 泥沙研究, 2011(4):59-66
[12] 许炯心, 孙季. 长江上游重点产沙区产沙量对人类活动的响应[J]. 地理科学, 2007, 27(2):211-218. DOI:10.3969/j.issn.1000-0690.2007.02.015
[13] REY F. Influence of vegetation distribution on sediment yield in forested marly gullies[J]. Catena, 2003, 50(2):549-562.
[14] SUMER B M, CHUA L H C, CHENG N S, et al. 2003 Influence of turbulence on bed load sediment transport[J]. Journal of Hydraulic Engineering, 2004, 129(8):585-596.
[15] 杨启红. 黄土高原典型流域土地利用与沟道工程的径流泥沙调控作用研究[D]. 北京:北京林业大学, 2009.
[16] 毕华兴, 朱金兆, 张学培. 晋西黄土区小流域场暴雨径流泥沙模型研究[J]. 北京林业大学学报, 1998(6):14-19
[17] MU Y S, LIU X D, WANG L D. A Pearson's correlation coefficient based decision tree and its parallel implementation[J]. Information Sciences, 2018, 435:40-58. DOI:10.1016/j.ins.2017.12.059.
[18] ZHANG W Y, WEI Z W, WANG B H, et al. Measuring mixing patterns in complex networks by Spearman rank correlation coefficient[J]. Physica A Statistical Mechanics & Its Applications, 2016, 451:440-450.