物理学与电子学

紧聚焦混合阶庞加莱光的自旋密度

  • 孙宏 ,
  • 董光炯
展开
  • 华东师范大学 精密光谱科学与技术国家重点实验室, 上海 200062

收稿日期: 2019-05-02

  网络出版日期: 2020-03-16

基金资助

国家自然科学基金(11574085,91536218,11834003);上海市教委科研创新计划(2019-01-07-00-05-E00079)

Spin density of tightly focused hybrid-order Poincaré beams

  • SUN Hong ,
  • DONG Guangjiong
Expand
  • State Key Laboratory of Precision Spectoscopy, East China Normal University, Shanghai 200062, China

Received date: 2019-05-02

  Online published: 2020-03-16

摘要

庞加莱光自旋密度分布的研究不仅有着实际的工程应用意义, 还对认识光的本性有着重要的意义. 研究了紧聚焦的混合阶庞加莱光的自旋密度, 发现它不仅有横向分量, 还有纵向分量; 与最近的研究总纵向自旋为零的紧聚焦满庞加莱光束不同, 其纵向总自旋不等于零. 紧聚焦的混合阶庞加莱光的自旋密度具有丰富的可调控的空间斑图, 特别是纵向自旋密度可以是环形, 还可以是正多边形等. 这些特征可用于手性微粒的光力学分离和操控, 也可用于产生等效磁场操控超冷旋量原子气体动力学.

本文引用格式

孙宏 , 董光炯 . 紧聚焦混合阶庞加莱光的自旋密度[J]. 华东师范大学学报(自然科学版), 2020 , 2020(2) : 70 -75 . DOI: 10.3969/j.issn.1000-5641.201922012

Abstract

Research on spin of Poincaré beams not only has practical engineering applications, but is also important for understanding the nature of light. In this paper, we study the spin density of the tightly focused hybrid-order Poincaré beams (TFPB) and find that it has both longitudinal and transverse components. Unlike tightly focused full Poincaré beams whose longitudinal spin density is on average zero, the total longitudinal spin density of tightly focused hybrid-order Poincaré beams is not zero. The spin density of TFPB has rich controllable spatial patterns; in particular, the longitudinal spin density can be either a ring shape or a regular polygon. These features can be used to separate chiral particles or to manipulate dynamics of ultracold spinot gases.

参考文献

[1] POINCARÉ H. Leçons sur la théorie mathématique de la lumière. Théorie mathématique de la lumière. II, Nouvellesétudes sur la diffraction, théorie de la dispersion de Helmholtz:Leçons professées pendant le premier semestre 1891-1892[R].[S.l.]: LAMOTTE M, HURMUZESCU D, 1892.
[2] BORN M, WOLF E. Principles of Optics[M]. 6th ed. New York:Pergamon Press, 1980.
[3] HOLBOURN A H S. Angular momentum of circularly polarised light[J]. Nature, 1936, 137(3453):31. DOI:10.1038/137031a0.
[4] YAO A M, PADGETT M J. Orbital angular momentum:Origins, behavior and applications[J]. Advances in Optics and Photonics, 2011, 3(2):161-204. DOI:10.1364/AOP.3.000161.
[5] MILIONE G, SZTUL H I, NOLAN D A, et al. Higher-order Poincaré sphere, Stokes parameters, and the angular momentum of light[J]. Physical Review Letters, 2011, 107(5):053601. DOI:10.1103/PhysRevLett.107.053601.
[6] YI X N, LIU Y C, LING X H, et al. Hybrid-order Poincaré sphere[J]. Physical Review A, 2015, 91(2):023801. DOI:10.1103/PhysRevA.91.023801.
[7] GU M. Advanced Optical Imaging Theory[M]. Heidelberg:Springer, 2006.
[8] WOLF E. Electromagnetic diffraction in optical systems-I. An integral representation of the image field[J]. Proceedings of the Royal Society A, 1959, 253(1274):349-357. DOI:10.1098/rspa.1959.0199.
[9] RICHARDS B, WOLF E. Electromagnetic diffraction in optical systems, II. Structure of the image field in an aplanatic system[J]. Proceedings of the Royal Society A, 1959, 253(1274):358-379. DOI:10.1098/rspa.1959.0200.
[10] EHMKE T, NITZSCHE T H, KNEBL A, et al. Molecular orientation sensitive second harmonic microscopy by radially and azimuthally polarized light[J]. Biomedical Optics Express, 2014, 5(7):2231-2246. DOI:10.1364/BOE.5.002231.
[11] BEKSHAEV A Y. Corrigendum:Subwavelength particles in an inhomogeneous light field:optical forces associated with the spin and orbital energy flows[J]. Journal of Optics, 2016, 18(2):029501. DOI:10.1088/2040-8978/18/2/029501.
[12] DAI X B, LI Y Q, LIU L H. Tight focusing properties of hybrid-order Poincaré sphere beams[J]. Optics Communications, 2018, 426:46-53. DOI:10.1016/j.optcom.2018.05.017.
[13] LERMAN G, STERN L, LEVY U. Generation and tight focusing of hybridly polarized vector beams[J]. Optics Express, 2010, 18(26):27650-7. DOI:10.1364/OE.18.027650.
[14] CHEN R, AGARWAL K, SHEPPARD C J, et al. Imaging using cylindrical vector beams in a high-numerical-aperture microscopy system[J]. Optics Letters, 2013, 38(16):3111-3114. DOI:10.1364/OL.38.003111.
[15] JESACHER A, FÜRHAPTER S, BERNET S, et al. Size selective trapping with optical "cogwheel" tweezers[J]. Optics Express, 2004, 12(17):4129-4135. DOI:10.1364/OPEX.12.004129.
[16] HNATOVSKY C, SHVEDOV V, KROLIKOWSKI W, et al. Revealing local field structure of focused ultrashort pulses[J]. Physical Review Letters, 2011, 106(12):123901. DOI:10.1103/PhysRevLett.106.123901.
[17] ALLEN L, BEIJERSBERGEN M W, SPREEUW R J C, et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes[J]. Physical Review A, 1992, 45(11):8185. DOI:10.1103/PhysRevA.45.8185.
[18] ALLEN L, PADGETT M J, BABIKER M. IV The orbital angular momentum of light[J]. Progress in Optics, 1999, 39(C):291-372. DOI:10.1016/S0079-6638(08)70391-3.
[19] ZHAO Y, EDGAR J S, JEFFRIES G D, MCGLOIN D, & CHIU D T. Spin-to-orbital angular momentum conversion in a strongly focused optical beam[J]. Physical Review Letters, 2007, 99(7):073901. DOI:10.1103/PhysRevLett.99.073901.
[20] BEKSHAEV A Y, SOSKIN M S, VASNETSOV M V. Transformation of higher-order optical vortices upon focusing by an astigmatic lens[J]. Optics Communications, 2004, 241(4/5/6):237-247. DOI:10.1016/j.optcom.2004.07.023.
[21] AIELLO A, BANZER P, NEUGEBAUER M, et al. From transverse angular momentum to photonic wheels[J]. Nature Photonics, 2015, 9(12):789-795. DOI:10.1038/nphoton.2015.203.
[22] ZHU W, SHVEDOV V, SHE W, et al. Transverse spin angular momentum of tightly focused full Poincaré beams[J]. Optics express, 2015, 23(26):34029-34041. DOI:10.1364/OE.23.034029.
[23] BRADSHAW D S, ANDREWS D L. Chiral discrimination in optical trapping and manipulation[J]. New Journal of Physics, 2014, 16(10):103021. DOI:10.1088/1367-2630/16/10/103021.
[24] LE KIEN F, SCHNEEWEISS P, RAUSCHENBEUTEL A. Dynamical polarizability of atoms in arbitrary light fields:General theory and application to cesium[J]. The European Physical Journal D, 2013, 67 Article number:92. DOI:10.1140/epjd/e2013-30729-x.
[25] DING K, NG J, ZHOU L, et al. Realization of optical pulling forces using chirality[J]. Physical Review A, 2014, 89(6):063825. DOI:10.1103/PhysRevA.89.063825.
[26] WEYRAUCH M, RAKOV M V. Dimerization in ultracold spinor gases with Zeeman splitting[J]. Physical Review B, 2017, 96:134404. DOI:10.1103/PhysRevB.96.134404.
文章导航

/