物理学与电子学

玻色-爱因斯坦凝聚体的光学色散关系

  • 廖宇娇 ,
  • 董光炯
展开
  • 华东师范大学 精密光谱科学与技术国家重点实验室, 上海 200062

收稿日期: 2019-05-06

  网络出版日期: 2020-03-16

基金资助

国家自然科学基金(11574085,91536218,11834003);上海市教委科研创新计划(2019-01-07-00-05-E00079)

Optical dispersion of Bose-Einstein condensates

  • LIAO Yujiao ,
  • DONG Guangjiong
Expand
  • State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China

Received date: 2019-05-06

  Online published: 2020-03-16

摘要

最近的研究表明, 玻色-爱因斯坦凝聚体(Bose-Einstein Condensate, BEC)可作为量子电介质材料对光场产生反作用,实现光场-物质波的协同操控. 然而 BEC 的色散性质还没有被研究.为此, 解析得到了 BEC 对大失谐光的一阶色散和二阶色散的计算公式. 数值计算表明, BEC的折射率以及二阶色散系数与红、蓝失谐的性质有关: 在红失谐时, 折射率大于1, 且二阶色散是正常色散; 在蓝失谐时, 折射率小于1, 二阶色散为反常色散. 二阶色散系数会随着失谐量的改变而剧烈变化, 当失谐量在 GHz 数量级时, 表现为强色散介质. 一阶色散和红、蓝失谐的性质关系不大, 随着失谐量的增加, 一阶色散减小, 相应的群速度增加. 因此, 对于超短脉冲光, BEC是一种新型的色散介质.

本文引用格式

廖宇娇 , 董光炯 . 玻色-爱因斯坦凝聚体的光学色散关系[J]. 华东师范大学学报(自然科学版), 2020 , 2020(2) : 76 -82 . DOI: 10.3969/j.issn.1000-5641.201922013

Abstract

Recent studies have shown that Bose-Einstein condensates (BEC) can act like quantum dielectric materials, which react to light fields, and thus co-manipulation of light-matter waves is possible. So far, the dispersion properties of BEC for optical fields with a large degree of detuning have not been investigated. Accordingly, in this paper, we analytically obtain formulas for the first- and second-order dispersion. Our numerical calculation shows that the refractive index and the second-order dispersion coefficient depend on the properties of red or blue detuning. In the case of red detuning, the refractive index is greater than 1 and the second-order dispersion is normal dispersion. In the case of blue detuning, the refractive index is less than 1 and the second-order dispersion is anomalous dispersion. The second-order dispersion coefficient changes dramatically with changes in detuning. When the detuning quantity is on the order of GHz, the BEC can function as a strong dispersion medium. The first-order dispersion is independent with red detuning or blue detuning; as the amount of detuning increases, the first-order dispersion decreases and the corresponding group velocity increases. Our research shows that BEC is a new dispersion medium for manipulating ultrashort pulse light.

参考文献

[1] GEORGESCU I M, ASHHAB S, NORI F. Quantum simulation[J]. Review of Modern Physics, 2014, 86(1):153-185. DOI:10.1103/RevModPhys.86.153.
[2] BLOCH I. Ultracold quantum gases in optical lattices[J]. Nature Physics, 2005(1):23-30. DOI:10.1038/nphys138.
[3] BLOCH I, DALIBARD J, NASCIMBENE S. Quantum simulations with ultracold quantum gases[J]. Nature Physics, 2012, 8(4):267-276. DOI:10.1038/nphys2259.
[4] BLOCH I, DALIBARD J, ZWERGER W. Many-body physics with ultracold gases[J]. Review of Modern Physics , 2008, 80(3):885-964. DOI:10.1103/RevModPhys.80.885.
[5] DUNNINGHAM J, BURNETT K, PHILLIPS W D. Bose-Einstein condensates and precision measurements[J]. Philosophical Transactions of the Royal Society A, 2006, 363(1834):2165-2175. DOI:10.1098/rsta.2005.1636.
[6] BOIXO S, DATTA A, DAVIS M J, et al. Quantum metrology with Bose-Einstein condensates[J]. AIP Conference Proceedings, 2009, 1110(1):423-426. DOI:10.1063/1.3131366.
[7] GINSBERG N S, GARNER S R, HAU L V. Coherent control of optical information with matter wave dynamics[J]. Nature, 2007, 445:623-626. DOI:10.1038/nature05493.
[8] HANSEN A, LESLIE L S, BHATTACHARYA M, et al. Transfer and storage of optical information in a spinor Bose-Einstein condensate[J]. OSA/FiO/LS, 2010:LTuJ1.
[9] CHU S. Cold atoms and quantum control[J]. Nature, 2002, 416:206-210. DOI:10.1038/416206a.
[10] HOHENESTER U, REKDAL P K, BORZ A, et al. Optimal quantum control of Bose-Einstein condensates in magnetic microtraps[J]. Physical Review A, 2007, 75:023602. DOI:10.1103/PhysRevA.75.023602.
[11] HAROUTYUNYAN H L. Coherent control of single atoms and Bose-Einstein condensates by light[D]. Netherlands:Leiden University, 2004.
[12] ZHAO L, JIANG J, TANG T, et al. Dynamics in spinor condensates tuned by a microwave dressing field[J]. Physical Review A, 2014, 89(2):023608. DOI:10.1103/PhysRevA.89.023608.
[13] CHANG M S, QIN Q, ZHANG W, et al. Coherent spinor dynamics in a spin-1 Bose condensate[J]. Nature Physics, 2005, 1(2):111-116. DOI:10.1038/nphys153.
[14] BOHI P, RIEDEL M F, HOFFROGGE J, et al. Coherent manipulation of Bose-Einstein condensates with state-dependent microwave potentials on an atom chip[J]. Nature Physics, 2009, 5(8):592-597. DOI:10.1038/nphys1329.
[15] ROBB G R, TESIO E, OPPO G L, et al. Quantum threshold for optomechanical self-structuring in a Bose-Einstein condensate[J]. Physical Review Letters, 2015, 114(17):173903. DOI:10.1103/PhysRevLett.114.173903.
[16] OSTERMANN S, PIAZZA F, RITSCH H. Spontaneous crystallization of light and ultracold atoms[J]. Physical Review X, 2016, 6(2):021026. DOI:10.1103/PhysRevX.6.021026.
[17] RODRIGUES J D, RODRIGUES J A, FERREIRA A V, et al. Photon bubble turbulence in cold atomic gases[J]. arXiv, 2016:1604.08114v1.
[18] LI K, DENG L, HAGLEY E W, et al. Matter-wave self-imaging by atomic center-of-mass motion induced interference[J]. Physical Review Letters, 2008, 101(25):250401. DOI:10.1103/PhysRevLett.101.250401.
[19] ZHU J, DONG G, SHNEIDER M N, et al. Strong local-field effect on the dynamics of a dilute atomic gas irradiated by two counterpropagating optical fields:Beyond standard optical lattices[J]. Physical Review Letters, 2011, 106(21):210403. DOI:10.1103/PhysRevLett.106.210403.
[20] DONG G, ZHU J, ZHANG W, et al. Polaritonic solitons in a Bose-Einstein condensate trapped in a soft optical lattice[J]. Physical Review Letters, 2013, 110(25):250401. DOI:10.1103/PhysRevLett.110.250401.
[21] BONS P C, DE HAAS R, DE JONG D, et al. Quantum enhancement of the index of refraction in a Bose-Einstein condensate[J]. Physical Review Letters, 2016, 116(17):173602. DOI:10.1103/PhysRevLett.116.173602.
[22] 秦杰利. 旋量玻色-爱因斯坦凝聚体与微波相互作用中的磁局域场效应[D]. 上海:华东师范大学, 2016.
[23] 朱江. 光与超冷原子相互作用中的局域场效应[D]. 上海:华东师范大学, 2014.
[24] COMPARAT D, FIORETTI A, STERN G, et al. Optimized production of large Bose-Einstein condensates[J]. Physical Review A, 2006, 73:043410. DOI:10.1103/PhysRevA.73.043410.
[25] STREED E W, CHIKKATUR A P, GUSTAVSON T L, et al. Large atom number Bose-Einstein condensate machines[J]. Review of Scientific Instruments, 2006, 77(2):023106. DOI:10.1063/1.2163977.
[26] VAN DER STAM K M, VAN OOIJEN E D, MEPPELINK R, et al. Large atom number Bose-Einstein condensate of sodium[J]. Review of Scientific Instruments, 2007, 78(1):013102. DOI:10.1063/1.2424439.
[27] AGRAWAL G P. Nonlinear Fiber Optics[M]. 5th ed. New York:Academic Press, 2013.
[28] GEHM M E. Preparation of an optically-trapped degenerate fermi gas of 6Li:Finding the route to degeneracy[D]. Durham:Duke University, 2003.
[29] ZHAI Y Y, ZHANG P, CHEN X Z, et al. Bragg diffraction of a matter wave driven by a pulsed nonuniform magnetic field[J]. Physical Review A, 2013, 88:053629. DOI:10.1103/PhysRevA.88.053629.
[30] PITAEVSKII L, STRINGARI S. Bose-Einstein Condensation[M]. Oxford:Clarendon Press, 2003.
[31] PETHICK C J, SMITH H. Bose-Einstein Condensation in Dilute Gases[M]. 2nd ed. Cambridge:Cambridge University Press, 2008.
文章导航

/