生态与环境科学

浙江天童国家森林公园常绿阔叶林种间关联和种-生境关联

  • 杨庆松 ,
  • 刘何铭 ,
  • 朱彤彤 ,
  • 张首和 ,
  • 王希华
展开
  • 华东师范大学 生态与环境科学学院 浙江天童森林生态系统国家野外科学观测研究站, 上海 200241
杨庆松,男,博士,工程师,研究方向为森林生态学.E-mail:qsyang@des.ecnu.edu.cn

收稿日期: 2019-03-22

  网络出版日期: 2020-03-16

基金资助

国家自然科学基金重大国际合作项目(31210103920);国家自然科学基金青年基金(31901103)

Interspecies associations and species-habitat associations in the evergreen broad-leaved forest of Tiantong National Forest Park, Zhejiang

  • YANG Qingsong ,
  • LIU Heming ,
  • ZHU Tongtong ,
  • ZHANG Shouhe ,
  • WANG Xihua
Expand
  • Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China

Received date: 2019-03-22

  Online published: 2020-03-16

摘要

为探究森林群落种间关联格局与物种生境偏好的关系, 采用空间点格局分析方法和点过程模型, 分析了浙江天童国家森林公园20 hm2常绿阔叶林样地109个木本植物的种间关联格局及种-生境关联, 结果表明: ①天童样地中, 种间负关联比例高于种间正关联, 具有显著关联的种对比例随尺度增加而增加; ②89.9%的物种至少与一类生境显著关联, 73.4%的物种与生境显著正关联, 65.1%的物种与生境显著负关联; ③在较大尺度上(> 20 m), 种间空间关联结果与种对的生境偏好类型表现出很好的一致性, 说明生境的异质性是形成较大尺度种间关联格局的重要原因; 而在较小尺度上(< 5 m), 种间关联格局与种对的生境偏好没有明显关系, 可能受到其他生态学过程的影响. 研究结果为进一步探究常绿阔叶林物种的共存机制提供了理论依据.

本文引用格式

杨庆松 , 刘何铭 , 朱彤彤 , 张首和 , 王希华 . 浙江天童国家森林公园常绿阔叶林种间关联和种-生境关联[J]. 华东师范大学学报(自然科学版), 2020 , 2020(2) : 110 -119 . DOI: 10.3969/j.issn.1000-5641.201931004

Abstract

The objective of this study was to clarify the relationship between interspecies associations and species habitat preferences in Tiantong National Forest Park. A total of 109 species of 20 hm2 evergreen broad-leaved forest plots were selected and tested for interspecies associations and species-habitat associations. The results indicated that: ① the ratio of species pairs with significant associations increased with spatial scale and the ratio of negative associations was higher than positive; ② 89.9% of species were significantly correlated with at least one habitat variable, including 73.4% of species positively and 65.1% of species negatively correlated with habitats; ③ at scales larger than 20 m, the results of interspecies associations were consistent with those of species pair habitat preferences; but at smaller scales (i.e., < 5 m), most species pairs did not show significant interspecies associations, indicating there are not habitat preferences but rather other ecological processes influencing interspecies association patterns. The results provide a theoretical basis for further understanding the mechanism of species coexistence in evergreen broad-leaved forests.

参考文献

[1] HE F, LEGENDRE P, LAFRANKIE J V. Distribution patterns of tree species in a Malaysian tropical rain forest[J]. Journal of Vegetation Science, 1997(8):105-114.
[2] WIEGAND T, MOLONEY K. Rings, circles, and null-models for point pattern analysis in ecology[J]. Oikos, 2004, 104:209-229. DOI:10.1111/j.0030-1299.2004.12497.x.
[3] WANG X, WIEGAND T, HAO Z, et al. Species associations in an old-growth temperate forest in north-eastern China[J]. Journal of Ecology, 2010, 98:674-686. DOI:10.1111/j.1365-2745.2010.01644.x.
[4] WIEGAND T, URIARTE M, KRAFT N J B, et al. Spatially explicit metrics of species diversity, functional diversity, and phylogenetic diversity:Insights into plant community assembly processes[J]. Annual Review of Ecology, Evolution, and Systematics, 2017, 48:329-351. DOI:10.1146/annurev-ecolsys-110316-022936.
[5] DIGGLE P J. Statistical Analysis of Point Patterns[M]. London:Arnold, 2003.
[6] WIEGAND T, GUNATILLEKE S, GUNATILLEKE N. Species associations in a heterogeneous Sri Lankan Dipterocarp Forest[J]. The American Naturalist, 2007, 170:E77-E95. DOI:10.1086/521240.
[7] HUBBELL S P. The Unified Neutral Theory of Biodiversity and Biogeography[M]. New Jersy:Princeton University Press, 2001.
[8] GETZIN S, WIEGAND T, WIEGAND K, et al. Heterogeneity influences spatial patterns and demographics in forest stands[J]. Journal of Ecology, 2008, 96:807-820. DOI:10.1111/j.1365-2745.2008.01377.x.
[9] GLEASON H A. The individualistic concept of the plant association[J]. Bulletin of the Torrey Botanical Club, 1926, 53:7-26. DOI:10.2307/2479933.
[10] GREIG-SMITH P. Quantitative Plant Ecology[M]. California:University of California Press, 1983.
[11] PHILLIPS O L, VARGAS P N, MONTEAGUDO A L, et al. Habitat association among Amazonian tree species:A landscape-scale approach[J]. Journal of Ecology, 2003, 91:757-775. DOI:10.1046/j.1365-2745.2003.00815.x.
[12] GUNATILLEKE C, GUNATILLEKE I, ESUFALI S, et al. Species-habitat associations in a Sri Lankan Dipterocarp Forest[J]. Journal of Tropical Ecology, 2006, 22:371-384. DOI:10.1017/S0266467406003282.
[13] VINCENT G, MOLINO J F, MARESCOT L, et al. The relative importance of dispersal limitation and habitat preference in shaping spatial distribution of saplings in a tropical moist forest:A case study along a combination of hydromorphic and canopy disturbance gradients[J]. Annals of Forest Science, 2011, 68:357-370. DOI:10.1007/s13595-011-0024-z.
[14] 谢玉彬, 马遵平, 杨庆松, 等. 基于地形因子的天童地区常绿树种和落叶树种共存机制研究[J]. 生物多样性, 2012, 20:159-167
[15] HARMS K, CONDIT R, HUBBELL S, et al. Habitat associations of trees and shrubs in a 50 ha neotropical forest plot[J]. Journal of Ecology, 2001, 89:947-959. DOI:10.1111/j.1365-2745.2001.00615.x.
[16] VALENCIA R, FOSTER R B, VILLA G, et al. Tree species distributions and local habitat variation in the Amazon:Large forest plot in eastern Ecuador[J]. Journal of Ecology, 2004, 92:214-229. DOI:10.1111/j.0022-0477.2004.00876.x.
[17] PLOTKIN J B, CHAVE J, ASHTON P S. Cluster analysis of spatial patterns in Malaysian tree species[J]. The American Naturalist, 2002, 160:629-644. DOI:10.1086/342823.
[18] SEIDLER T G, PLOTKIN J B. Seed dispersal and spatial pattern in tropical trees[J]. PLoS Biology, 2006(4):e344.
[19] JANZEN D H. Herbivores and the number of tree species in tropical forests[J]. The American Naturalist, 1970, 104:501-528.
[20] TILMAN D. Niche tradeoffs, neutrality, and community structure:A stochastic theory of resource competition, invasion, and community assembly[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101:10854-10861. DOI:10.1073/pnas.0403458101.
[21] CALLAWAY R M, WALKER L R. Competition and facilitation:A synthetic approach to interactions in plant communities[J]. Ecology, 1997, 78:1958-1965. DOI:10.1890/0012-9658(1997)078[1958:CAFASA]2.0.CO;2.
[22] YANG Q S, SHEN G C, LIU H M, et al. Detangling the effects of environmental filtering and dispersal limitation on aggregated distributions of tree and shrub species:Life stage matters[J]. PLoS ONE, 2016(11):e0156326.
[23] HARMS T M, DINSMORE S J. Spatial scale matters when modeling avian co-occurrence[J]. Ecosphere, 2016(7):e01288.
[24] JOHN R, DALLING J W, HARMS K E, et al. Soil nutrients influence spatial distributions of tropical tree species[J]. Proceedings of the National Academy of Sciences, 2007, 104:864-869. DOI:10.1073/pnas.0604666104.
[25] 杨庆松, 马遵平, 谢玉彬, 等. 浙江天童 20ha 常绿阔叶林动态监测样地的群落特征[J]. 生物多样性, 2011, 19:215-223
[26] 宋永昌, 王祥荣. 浙江天童国家森林公园的植被和区系[M]. 上海:上海科学技术文献出版社, 1995.
[27] CONDIT R. Tropical Forest Census Plots:Methods and Results from Barro Colorado Island, Panama and A Comparison with Other Plots[M]. USA:Springer. 1998.
[28] SHEN G C, YU M J, HU X S, et al. Species-area relationships explained by the joint effects of dispersal limitation and habitat heterogeneity[J]. Ecology, 2009, 90:3033-3041. DOI:10.1890/08-1646.1.
[29] BADDELEY A, TURNER R. Spatstat:An R package for analyzing spatial point patterns[J]. Journal of Statistical Software, 2005(12):1-42.
[30] ITOH A, OHKUBO T, NANAMI S, et al. Comparison of statistical tests for habitat associations in tropical forests:A case study of sympatric dipterocarp trees in a Bornean forest[J]. Forest Ecology and Management, 2010, 259:323-332. DOI:10.1016/j.foreco.2009.10.022.
[31] URIARTE M, CONDIT R, CANHAM C D, et al. A spatially explicit model of sapling growth in a tropical forest:Does the identity of neighbours matter[J]. Journal of Ecology, 2004, 92:348-360. DOI:10.1111/j.0022-0477.2004.00867.x.
[32] BAR-MASSADA A, YANG Q S, SHEN G C, et al. Tree species co-occurrence patterns change across grains:Insights from a subtropical forest[J]. Ecosphere, 2018, 9(5):e02213. DOI:10.1002/ecs2.2213.
[33] LEGENDRE P. Species associations:The kendall coefficient of concordance revisited[J]. Journal of Agricultural, Biological, and Environmental Statistics, 2005(10):226-245.
[34] PETERS H A. Neighbour-regulated mortality:The influence of positive and negative density dependence on tree populations in species-rich tropical forests[J]. Ecology Letters, 2003(6):757-765.
[35] MAESTRE F T, CALLAWAY R M, VALLADARES F, et al. Refining the stress-gradient hypothesis for competition and facilitation in plant communities[J]. Journal of Ecology, 2009, 97:199-205. DOI:10.1111/j.1365-2745.2008.01476.x.
[36] 张炜平, 潘莎, 贾昕, 等. 植物间正相互作用对种群动态和群落结构的影响:基于个体模型的研究进展[J]. 植物生态学报, 2013, 37:571-582
[37] CONDIT R, ASHTON P S, BAKER P, et al. Spatial patterns in the distribution of tropical tree species[J]. Science, 2000, 288:1414-1418. DOI:10.1126/science.288.5470.1414.
[38] KRAFT N J, VALENCIA R, ACKERLY D D. Functional traits and niche-based tree community assembly in an Amazonian forest[J]. Science, 2008, 322:580-582. DOI:10.1126/science.1160662.
[39] ADLER P B, FAJARDO A, KLEINHESSELINK A R, et al. Trait-based tests of coexistence mechanisms[J]. Ecology Letters, 2013, 16:1294-1306. DOI:10.1111/ele.12157.
[40] FANG X F, SHEN G C, YANG Q S, et al. Habitat heterogeneity explains mosaics of evergreen and deciduous trees at local-scales in a subtropical evergreen broad-leaved forest[J]. Journal of Vegetation Science, 2017, 28:379-388. DOI:10.1111/jvs.12496.
文章导航

/