河口海岸学

潮控型分汊河口分流过程探讨——以长江北支口为例

  • 陆佳玉 ,
  • 葛建忠 ,
  • 丁平兴
展开
  • 华东师范大学 河口海岸学国家重点实验室, 上海 200241

收稿日期: 2019-05-10

  网络出版日期: 2020-05-22

基金资助

国家重点研发计划(2016YFA0600903);中美大河三角洲侵蚀灾害与应对策略比较研究(2017YFE0107400);国家自然科学基金(41776104)

A discussion on the diversion process of tide-dominated estuary bifurcation: The North Branch estuary of the Yangtze River

  • LU Jiayu ,
  • GE Jianzhong ,
  • DING Pingxing
Expand
  • State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China

Received date: 2019-05-10

  Online published: 2020-05-22

摘要

长江北支口是典型的潮控型分汊河口,其水动力及其汊道分流过程是影响潮控河口物质输运和地貌演变的主要因素. 本文基于2018年春季在北支口各汊道的坐底三脚架资料与断面走航资料,计算各汊道的优势流. 结果发现:大潮时,北支三条港与顾圆沙南水道均呈现涨潮优势,水流净向陆输运;顾圆沙北水道则呈现落潮优势,水流净输运方向指向口外. 同时,结合FVCOM高分辨率数值模拟,对北支口分流过程进行模拟. 结果表明,由于顾圆沙南水道近海口断面面积远大于北水道,且方位与涨潮时潮波传播方向一致,大部分外海潮波经过顾圆沙南水道上溯,涨潮量在南北水道空间上分配的差异性极大;同时,一部分经顾圆沙南水道上溯的潮波会越滩至北水道,与上游径流汇合后,共同经顾圆沙北水道下泄,北水道的落潮量增加,落潮量在空间上分配的差异性减小. 当大潮时,顾圆沙北水道的涨落潮分流比为29.7%、47.2%;小潮时,顾圆沙北水道的涨落潮分流比为41.6%、43.1%. 北支口余流基本态势为南水道进、北水道出. 这些指标及分流特征可为河口的物质输运、地貌演变及各汊道的发育、维持和衰亡过程的预测提供关键的指示参数.

本文引用格式

陆佳玉 , 葛建忠 , 丁平兴 . 潮控型分汊河口分流过程探讨——以长江北支口为例[J]. 华东师范大学学报(自然科学版), 2020 , 2020(3) : 1 -12 . DOI: 10.3969/j.issn.1000-5641.201941015

Abstract

The North Branch estuary of the Yangtze River is a typical tide-dominated estuary with bifurcation. The hydrodynamics and diversion processes are the major factors in sediment transport and geomorphology evolution of the tide-dominated estuary. This paper is based on data from the bottom tripod system and a cross-section survey of the North Branch in April 2018, whereby the dominant flow of each channel is calculated. The results show that during the spring tide cycle, the Santiao Port and the Guyuansha south waterway are flood-dominated and the net tidal current flows landward, whereas the Guyuansha north waterway is ebb-dominated, and the net flow has a seaward direction. Moreover, a high-resolution numerical FVCOM model is used to simulate the diversion process of the North Branch estuary. The results suggest that: the cross-sectional area of Guyuansha south waterway is much bigger than that of the north waterway, and the propagation direction of the lateral tide is consistent with the orientation of the Guyuansha south waterway, which mainly has onshore movement through the Guyuansha south waterway. The spatial distribution of the flood tide flow is significantly uneven in these two waterways. Meanwhile, tidal current from the Guyuansha south waterway crosses the shallow shoal and reaches the north waterway. It produces a net flow with the seaward direction through the north waterway. The flood-tide and ebb-tide diversion ratio of the Guyuansha north waterway are 29.7% and 47.2%, respectively, during the spring tide period and 41.6% and 43.1%, respectively, during the neap tide period. The residual patterns indicate that the tidal current enters the estuary from the south waterway and exits through the north waterway. These indicators and diversion characteristics can help predict estuarine sediment transport and geomorphological evolution processes within an individual bifurcated channel.

参考文献

[1] 窦润青, 郭文云, 葛建忠, 等. 长江口北槽落潮分流比变化原因分析[J]. 华东师范大学学报(自然科学版), 2014(3): 93-104
[2] 道付海, 栾华龙, 杨万伦, 等. 长江河口南北槽分流口工程及瑞丰沙地形变化对分流比的影响[J]. 华东师范大学学报(自然科学版), 2018(3): 170-183
[3] CANESTRELLI A, LANZONI S, FAGHERAZZI S. One-dimensional numerical modeling of the long-term morphodynamic evolution of a tidally-dominated estuary: The lower fly river (Papua New Guinea)[J]. Sedimentary Geology, 2014, 301: 107-119. DOI: 10.1016/j.sedgeo.2013.06.009.
[4] VERMEULEN T J. Sensitivity analysis of fine sediment transport in the Humber estuary[R]. Civil Engineering & Geosciences, 2004.
[5] YU Q, WANG Y, GAO S, et al. Modeling the formation of a sand bar within a large funnel- shaped, tide-dominated estuary: Qiantangjiang Estuary, China[J]. MARINE GEOLOGY, 2012, 299: 63-76.
[6] 陈沈良, 陈吉余, 谷国传. 长江口北支的涌潮及其对河口的影响[J]. 华东师范大学学报(自然科学版), 2003(2): 74-80
[7] DAI Z, FAGHERAZZI S, MEI X, et al. Linking the infilling of the North Branch in the Changjiang (Yangtze) estuary to anthropogenic activities from 1958 to 2013[J]. Marine Geology, 2016, 379: 1-12. DOI: 10.1016/j.margeo.2016.05.006.
[8] 杨欧, 刘苍字. 长江口北支沉积物粒径趋势及泥沙来源研究[J]. 水利学报, 2002, 33(2): 79-84. DOI: 10.3321/j.issn:0559-9350.2002.02.014
[9] 贾海林, 刘苍字, 杨欧. 长江口北支沉积动力环境分析[J]. 华东师范大学学报(自然科学版), 2001(1): 90-96
[10] 茅志昌, 沈焕庭, 肖成猷. 长江口北支盐水倒灌南支对青草沙水源地的影响[J]. 海洋与湖沼, 2001, 32(1): 58-66. DOI: 10.3321/j.issn:0029-814X.2001.01.010
[11] 孔亚珍, 贺松林, 丁平兴, 等. 长江口盐度的时空变化特征及其指示意义[J]. 海洋学报, 2004, 26(4): 9-18
[12] 李伯昌. 1984年以来长江口北支演变分析[J]. 水利水运工程学报, 2006(3): 9-17. DOI: 10.3969/j.issn.1009-640X.2006.03.002
[13] LUO X X, YANG S L, WANG R S, et al. New evidence of Yangtze delta recession after closing of the Three Gorges Dam[J]. Scientific Reports, 2017(7): 41735.
[14] GE J Z, DING P X, CHEN C S. Low-salinity plume detachment under non-uniform summer wind off the Changjiang Estuary[J]. Estuarine, Coastal and Shelf Science, 2015, 156: 61-70. DOI: 10.1016/j.ecss.2014.10.012.
[15] BUSCHMAN F A, HOITINK A, VAN DER VEGT M, et al. Subtidal flow division at a shallow tidal junction[J]. Water Resources Research, 2010, 45(12): 137-139.
[16] CANESTRELLI A, FAGHERAZZI S, DEFINA A, et al. Tidal hydrodynamics and erosional power in the Fly River delta, Papua New Guinea[J]. Journal of Geophysical Research: Earth Surface, 2010, 115(F4). DOI: 10.1029/2009JF001355.
[17] 张蔚, 冯浩川, 徐阳, 等. 长江口分流过程对周期性潮波运动的响应机制[C]//第十七届中国海洋(岸)工程学术讨论会. 南宁, 2015.
文章导航

/