地理学

IPBES土地退化与恢复驱动因素审视

  • 郭晓娜 ,
  • 陈睿山 ,
  • 李强 ,
  • 潘真真
展开
  • 1. 华东师范大学 地理科学学院, 上海 200241;
    2. 河南大学 环境与规划学院, 河南 开封 475001;
    3. 武汉大学 资源与环境科学学院, 武汉 430079
郭晓娜,女,博士研究生,研究方向为土地利用与人类环境耦合.E-mail:gxn15802376539@sina.cn

收稿日期: 2019-03-29

  网络出版日期: 2020-05-22

基金资助

国家重点研发计划(2017YFC1503001);国家自然科学基金(41771119);国土资源部岩溶生态系统与石漠化治理重点实验室开放课题

Review of driving factors for land degradation and restoration based on IPBES

  • GUO Xiaona ,
  • CHEN Ruishan ,
  • LI Qiang ,
  • PAN Zhenzhen
Expand
  • 1. School of Geographical Sciences, East China Normal University, Shanghai 200241, China;
    2. College of Environment and Planning, Henan University, Kaifeng Henan 475001, China;
    3. College of Resources and Environmental Sciences, Wuhan University, Wuhan 430079, China

Received date: 2019-03-29

  Online published: 2020-05-22

摘要

土地退化是全球性重大生态问题之一,危及32亿人的福祉,威胁粮食、水安全,降低生物多样性,同时引发地区冲突、大规模人口迁徙和疾病传播,近年来受到UN、IPBES、IPCC等组织的广泛关注. 理解土地退化的驱动因素是防止土地退化和恢复退化土地的根本. 本文以生物多样性和生态系统服务政府间科学政策平台(IPBES)土地退化与恢复评估报告为基础,审视了土地退化的驱动因素. 具体包括:土地退化的直接驱动因素,即牧场经营,农田和农林管理,森林和人工林改造,非木材自然资源开采,林火变化,外来物种引进,采掘业发展,以及基础设施建设、工业化、城市化共8类;间接驱动因素和作用机制,包括人口、经济、科学知识和技术、制度与管理及文化5大间接驱动因素间的交互作用、情境依赖、非线性剧变和远程耦合式驱动机制. 并指出气候变化也可导致多种类型的土地退化. 最后聚焦我国典型地区土地退化的驱动因素,并提出相应的防范和应对措施. 对土地退化驱动因素的深入理解,将为我国“山水林田湖草”土地系统的统筹治理和“美丽中国”建设提供决策支持.

本文引用格式

郭晓娜 , 陈睿山 , 李强 , 潘真真 . IPBES土地退化与恢复驱动因素审视[J]. 华东师范大学学报(自然科学版), 2020 , 2020(3) : 109 -118 . DOI: 10.3969/j.issn.1000-5641.201941009

Abstract

Land degradation is one of the major global ecological problems that is endangering the health and well-being of 3.2 billion people, threatening food and water security, and reducing biodiversity. Land degradation, moreover, is triggering regional conflicts, large-scale migration and the spread of disease, and has raised widespread concerns from international organizations such as the UN, IPBES, and IPCC in recent years. Understanding the drivers of land degradation is fundamental to preventing land degradation and restoring degraded land. This paper examines the drivers of land degradation based on a land degradation and restoration assessment report from the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES). The factors that lead to land degradation can be divided into direct (human) drivers, indirect (human) drivers, and climate change. This paper elaborates on eight types of direct drivers for land degradation, namely grazing land management; cropland and agroforestry management; forests and tree plantation management; non-timber natural resource extraction; fire regime change; extractive industry and energy development; construction, industrial development, and urbanization; and invasive species. This research also explores indirect driving factors and their respective mechanisms, including: population, economy, technology, institution and management, and culture as well as mechanisms (i.e. interaction effects) that are situation-dependent, nonlinear or abruptly-changing, and remotely coupled. The research notes that climate change can also lead to various types of land degradation. Finally, this article reviews driving factors for land degradation in typical areas of China and proposes relevant preventive and response measures. An in-depth understanding of the drivers for land degradation will provide decision making support for “the governance of mountains, water, forests, cropland, lakes, and grass ecosystems” as well as the construction of “Beautiful China”.

参考文献

[1] LE Q B, NKONYA E, MIRZABAEV A. Biomass productivity-based mapping of global land degradation hotspots[M]//NKONYA E, MIRZABAEV A, VON BRAUN J. Economics of Land Degradation and Improvement: A Global Assessment for Sustainable Development.[S. l.]: Springer, 2016: 55-84.
[2] SCHOLES R, MONTANARELLA L, BRAINICH A, et al. IPBES (2018): Summary for policymakers of the assessment report on land degradation and restoration of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services[R]. Bonn, Germany: IPBES secretariat, 2018.
[3] United Nations Convention to Combat Desertification (UNCCD). Sustainable financing for forest and landscape restoration[R]. Rome: UNCCD, 2015.
[4] MILLENNIUM ECOSYSTEM ASSESSMENT. Ecosystems and Human Well-being: Biodiversity Synthesis[R]. Washington, DC: World Resources Institute, 2005.
[5] GIBBS H K, SALMON J M. Mapping the world’s degraded lands[J]. Applied Geography, 2015, 57: 12-21. DOI: 10.1016/j.apgeog.2014.11.024.
[6] DAVIDSON N C. How much wetland has the world lost? Long-term and recent trends in global wetland area[J]. Marine and Freshwater Research, 2014, 65(10): 934-941. DOI: 10.1071/MF14173.
[7] UN-FAO. LADA: Assessing the status, causes and impact of land degradation[R]. Rome: FAO, 2009.
[8] VAN DER ESCH S, TEN BRINK B, STEHFEST E, et al. Exploring Future Changes in Land Use and Land Condition and the Impacts on Food, Water, Climate Change and Biodiversity: Scenarios for the UNCCD Global Land Outlook[M]. Hague: PBL Netherlands Environmental Assessment Agency, 2017.
[9] International Union for Conservation of Nature. Bonn Challenge[EB/OL].[2019-03-30]. http://www.bonnchallenge.org.
[10] United Nations Convention to Combat Desertification. Zero Net Land Degradation-A sustainable development goal for Rio+20: To secure the contribution of our planet’s land and soil to sustainable development, including food security and poverty eradication (Policy Bri)[R]. Bonn: UNCCD, 2012.
[11] WARNER K, ERHART C, SHERBININ A, et al. In search of shelter: Mapping the effects of climate change on human migration and displacement[R]. New York: Columbia University, 2009.
[12] 许端阳. 气候变化和人类活动在沙漠化过程中相对作用的定量研究[D]. 南京: 南京农业大学, 2009.
[13] 王云霞. 内蒙古草地资源退化及其影响因素的实证研究[D]. 呼和浩特: 内蒙古农业大学, 2010.
[14] 杨朝飞. 中国土地退化及其防治对策[J]. 中国环境科学, 1997(2): 13-17
[15] 汪潇. 基于遥感的土地退化指标因子提取和综合评价[D]. 北京: 中国科学院遥感应用研究所, 2007.
[16] GEIST H J, LAMBIN E F. Proximate causes and underlying driving forces of tropical deforestation[J]. BioScience, 2002, 52(2): 143-150. DOI: 10.1641/0006-3568(2002)052[0143:PCAUDF]2.0.CO;2.
[17] NELSON G C, BENNETT E, BERHE A, et al. Anthropogenic drivers of ecosystem change: An overview[J]. Ecology and Society, 2006, 11(2): 29. DOI: 10.5751/ES-01826-110229.
[18] GUNS M, VANACKER V. Forest cover change trajectories and their impact on landslide occurrence in the tropical Andes[J]. Environmental Earth Sciences, 2013, 70(7): 2941-2952. DOI: 10.1007/s12665-013-2352-9.
[19] HAN W Y, LIU G H, SU X K, et al. Assessment of potential land degradation and recommendations for management in the south subtropical region, Southwest China[J]. Land Degradation & Development, 2019, 30(8): 979-990.
[20] STEINFELD H. Livestock production in the Asia and Pacific region: Current status, issues and trends[J]. Journal of the Geological Society of Japan, 1998, 90(1): 14-21.
[21] NKONYA E, MIRZABAEV A, VON B J. Economics of Land Degradation and Improvement: A Global Assessment for Sustainable Development[M]. Cham, Switzerland: Springer International Publishing, 2016.
[22] KEENAN R J, REAMS G A, ACHARD F, et al. Dynamics of global forest area: Results from the FAO Global Forest Resources Assessment 2015[J]. Forest Ecology and Management, 2015, 352: 9-20. DOI: 10.1016/j.foreco.2015.06.014.
[23] BROCKERHOFF E G, JACTEL H, PARROTTA J A, et al. Role of eucalypt and other planted forests in biodiversity conservation and the provision of biodiversity-related ecosystem services[J]. Forest Ecology & Management, 2013, 301(4): 43-50.
[24] BROCKERHOFF E G, JACTEL H, PARROTTA J A, et al. Plantation forests and biodiversity: Oxymoron or opportunity[J]. Biodiversity & Conservation, 2008, 17(5): 925-951.
[25] CARNUS J M, PARROTTA J, BROCKERHOFF E, et al. Planted forests and biodiversity[J]. Journal of Forestry, 2006, 104(2): 65-77.
[26] LAMB D. Regreening the Bare Hills: Forest and Land Degradation in the Asia-Pacific Region[M]. Dordrecht, Netherlands: Springer, 2011.
[27] DE BEER J H, MCDERMOTT M J. The Economic Value of Non-Timber Forest Products in Southeast Asia[M]. Amsterdam, Netherlands: World Conservation Union (IUCN), 1996.
[28] FA J E, PERES C A, MEEUWIG J. Bushmeat exploitation in tropical forests: An intercontinental comparison[J]. Conservation Biology, 2002, 16(1): 232-237. DOI: 10.1046/j.1523-1739.2002.00275.x.
[29] MILNER-GULLAND E J, BENNETT E L, ABERNETHY K, et al. Wild meat: The bigger picture[J]. Trends in Ecology and Evolution, 2003, 18(7): 351-357. DOI: 10.1016/S0169-5347(03)00123-X.
[30] RUWANZA S, SHACKLETON C M. Ecosystem-scale impacts of non-timber forest product harvesting: Effects on soil nutrients[J]. Journal of Applied Ecology, 2017, 54(5): 1515-1525. DOI: 10.1111/1365-2664.12891.
[31] SHANKAR U M A, HEGDE R, BAWA K S. Extraction of non-timber forest products in the forests of Biligiri Rangan Hills, India. 6. Fuelwood pressure and management options[J]. Economic Botany, 1998, 52(3): 320-336. DOI: 10.1007/BF02862151.
[32] TICKTIN T. The ecological implications of harvesting[J]. Journal of Applied Ecology, 2004, 41(1): 11-21. DOI: 10.1111/j.1365-2664.2004.00859.x.
[33] GIGLIO L, RANDERSON J T, VAN DER WERF G R. Analysis of daily, monthly, and annual burned area using the fourth-generation global fire emissions database (GFED4)[J]. Journal of Geophysical Research: Biogeosciences, 2013, 118(1): 317-328. DOI: 10.1002/jgrg.20042.
[34] KRAWCHUK M A, MORITZ M A, PARISIEN M A, et al. Global pyrogeography: The current and future distribution of wildfire[J]. PLoS One, 2009, 4(4): e5102. DOI: 10.1371/journal.pone.0005102.
[35] SHLISKY A, WAUGH J, GONZALES P, et al. Fire, ecosystems & people: threats and strategies for global biodiversity conservation[R]//Global Fire Initiative Technical Report 2007-2. Arlington, VA: The Nature Conservancy, 2007.
[36] BRIDGE G. Contested terrain: Mining and the environment[J]. Annual Review of Environment & Resources, 2004, 29(1): 205-259.
[37] BUTT N, BEYER H L, BENNETT J R, et al. Biodiversity risks from fossil fuel extraction[J]. Science, 2013, 342(6157): 425-426. DOI: 10.1126/science.1237261.
[38] DURÁN A P, RAUCH J, GASTON K J. Global spatial coincidence between protected areas and metal mining activities[J]. Biological Conservation, 2013, 160: 272-278. DOI: 10.1016/j.biocon.2013.02.003.
[39] MURGUÍA D I, BRINGEZU S, SCHALDACH R. Global direct pressures on biodiversity by large-scale metal mining: Spatial distribution and implications for conservation[J]. Journal of Environmental Management, 2016, 180: 409-420.
[40] TOWNSEND P A, HELMERS D P, KINGDON C C, et al. Changes in the extent of surface mining and reclamation in the Central Appalachians detected using a 1976—2006 Landsat time series[J]. Remote Sensing of Environment, 2009, 113: 62-72. DOI: 10.1016/j.rse.2008.08.012.
[41] United Nations Population Division. World population prospects 2017[DB/OL].[2019-03-25]. https://population.un.org/wpp/.
[42] GEIST H, LAMBIN E F. Dynamic causal patterns of desertification[J]. BioScience, 2004, 54(9): 817-829. DOI: 10.1641/0006-3568(2004)054[0817:DCPOD]2.0.CO;2.
[43] DÍAZ S, DEMISSEW S, CARABIAS J, et al. The IPBES conceptual framework-connecting nature and people[J]. Current Opinion in Environmental Sustainability, 2015, 14: 1-16. DOI: 10.1016/j.cosust.2014.11.002.
[44] KISSINGER G M, HEROLD M, SY V D. Drivers of deforestation and forest degradation: A synthesis report for REDD+policymakers[R]. Vancouver, Canada: Lexeme Consulting, 2012.
[45] VAN VLIET N, MERTZ O, HEINIMANN A, et al. Trends, drivers and impacts of changes in swidden cultivation in tropical forest-agriculture frontiers: A global assessment[J]. Global Environmental Change, 2012, 22(2): 418-429. DOI: 10.1016/j.gloenvcha.2011.10.009.
[46] 张锂. 黄土高原地区煤矿土壤重金属污染调查研究及生态风险评价——以兰州红古煤矿为例[D]. 兰州: 西北师范大学, 2007.
[47] 潘根兴, 冉炜. 中国大气酸沉降与土壤酸化问题[J]. 热带亚热带土壤科学, 1994(4): 243-252
[48] LAMBIN E F, MEYFROIDT P. Land use transitions: Socio-ecological feedback versus socio-economic change[J]. Land Use Policy, 2010, 27(2): 108-118. DOI: 10.1016/j.landusepol.2009.09.003.
[49] MÜLLER D, SUN Z, VONGVISOUK T, et al. Regime shifts limit the predictability of land-system change[J]. Global Environmental, 2014, 28(1): 75-83.
[50] RAMANKUTTY N, COOMES O T. Land-use regime shifts: An analytical framework and agenda for future landuse research[J]. Ecology and Society, 2016, 21(2): 1. DOI: 10.5751/ES-08370-210201.
[51] MEYFROIDT P, LAMBIN E, ERB K H, et al. Globalization of land use: Distant drivers of land change and geographic displacement of land use[J]. Current Opinion in Environmental Sustainability, 2013, 5(5): 438-444. DOI: 10.1016/j.cosust.2013.04.003.
[52] HARGRAVE J, KIS-KATOS K. Economic causes of deforestation in the Brazilian Amazon: A panel data analysis for the 2000s[J]. Environ Resource Econ, 2013, 4(54): 471-494.
[53] NEPSTAD D, STICKLER C M, ALMEIDA O T. Globalization of the Amazon soy and beef industries: Opportunities for Conservation[J]. Conservation Biology, 2006, 20(6): 1595-1603. DOI: 10.1111/j.1523-1739.2006.00510.x.
[54] LIU J G, HULL V, BATISTELLA M, et al. Framing sustainability in a telecoupled world[J]. Ecology and Society, 2013, 36(23): 7870-7885.
[55] LAMBIN E F, TURNER B, GEIST H, et al. The causes of land-use and land-cover change: Moving beyond the myths[J]. Global Environmental Change, 2001, 11(4): 261-269. DOI: 10.1016/S0959-3780(01)00007-3.
[56] SCHIERHORN F, MEYFROIDT P, KASTNER T, et al. The dynamics of beef trade between Brazil and Russia and their environmental implications[J]. Global Food Security, 2016, 11: 84-92. DOI: 10.1016/j.gfs.2016.08.001.
[57] LAMBIN E F, MEYFROIDT P. Global land use change, economic globalization, and the looming land scarcity[J]. PNAs, 2011, 108(9): 3465-3472. DOI: 10.1073/pnas.1100480108.
[58] IPCC. Summary for policymakers. Climate change 2014: Synthesis report[R]. Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change, 2014.
[59] POUNDS J A, BUSTAMANTE M R, COLOMA L, et al. Widespread amphibian extinctions from epidemic disease driven by global warming[J]. Nature, 2006, 439(7073): 161-167. DOI: 10.1038/nature04246.
[60] POUNDS J, FOGDEN M, CAMPBELL J. Biological response to climate change on a tropical mountain[J]. Nature, 1999, 398(6728): 611-615. DOI: 10.1038/19297.
[61] SINERVO B, MENDEZ-DE-LA-CRUZ F, MILES D B, et al. Erosion of lizard diversity by climate change and altered thermal niches[J]. Science, 2010, 328(5980): 894-899. DOI: 10.1126/science.1184695.
[62] ALLEN C D. Climate-induced forest dieback: An escalating global phenomenon?[J]. Unasylva, 2009, 60(231): 43-49.
[63] ALLEN C D, MACALADY A K, CHENCHOUNI H, et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests[J]. Forest Ecology and Management, 2010, 259(4): 660-684. DOI: 10.1016/j.foreco.2009.09.001.
[64] CLARKE M L, RENDELL H M. Climate, Extreme Events and Land Degradation[M]//SIVAKUMAR M V K, NDIANG'UI N. Climate and Land Degradation. Heidelberg, Berlin: Springer, 2007.
[65] HOOVER D L, DUNIWAY M C, BELNAP J. Testing the apparent resistance of three dominant plants to chronic drought on the Colorado Plateau[J]. Journal of Ecology, 2017, 105(1): 152-162. DOI: 10.1111/1365-2745.12647.
[66] LEWIS S L, BRANDO P M, PHILLIPS O, et al. The 2010 Amazon drought[J]. Science, 2011, 331: 554. DOI: 10.1126/science.1200807.
[67] PHILLIPS O L, ARAGÃO L E O C, LEWIS S L, et al. Drought sensitivity of the Amazon rainforest[J]. Science, 2009, 323(5919): 1344-1347. DOI: 10.1126/science.1164033.
[68] JARAMILLO J, MUCHUGU E, VEGA F E, et al. Some like it hot: The influence and implications of climate change on coffee berry borer (Hypothenemus hampei) and coffee production in East Africa[J]. PLoS One, 2011, 6(9): e24528. DOI: 10.1371/journal.pone.0024528.
[69] BAI Z G, DENT D. Recent land degradation and improvement in China[J]. Ambio, 2009, 38(3): 150-6. DOI: 10.1579/0044-7447-38.3.150.
[70] LIU M, DRIES L, HEIJMAN W, et al. Land tenure reform and grassland degradation in Inner Mongolia, China[J]. China Economic Review, 2019, 55: 181-198. DOI: 10.1016/j.chieco.2019.04.006.
[71] LI S Y, VERBURG P H, LV S H, et al. Spatial analysis of the driving factors of grassland degradation under conditions of climate change and intensive use in Inner Mongolia, China[J]. Regional Environmental Change, 2011, 12(3): 461-474.
[72] BATUNACUN, RALF W, TOBIA L, et al. Identifying drivers of land degradation in Xilingol, China, between 1975 and 2015[J]. Land Use Policy, 2019, 83: 543-559. DOI: 10.1016/j.landusepol.2019.02.013.
[73] JIANG C, ZHANG H Y, WANG X C, et al. Challenging the land degradation in China’s Loess Plateau: Benefits, limitations, sustainability, and adaptive strategies of soil and water conservation[J]. Ecological Engineering, 2019, 127: 135-150. DOI: 10.1016/j.ecoleng.2018.11.018.
[74] 李宪文, 张克锋, 张定祥, 等. 中国土地资源退化时空变化分析[J]. 环境科学, 2006(6): 1244-1251. DOI: 10.3321/j.issn:0250-3301.2006.06.040
[75] 朱守谦, 王德炉, 黄宝龙. 贵州喀斯特区石漠化过程中植被特征的变化[J]. 南京林业大学学报(自然科学版), 2003(3): 26-30. DOI: 10.3969/j.issn.1000-2006.2003.03.006
[76] 任海. 喀斯特山地生态系统石漠化过程及其恢复研究综述[J]. 热带地理, 2005(3): 195-200. DOI: 10.3969/j.issn.1001-5221.2005.03.001
[77] ZHANG K, YU Z, LI X, et al. Land use change and land degradation in China from 1991 to 2001[J]. Land Degradation & Development, 2007, 18(2): 209-219.
文章导航

/