数据中台应用

基于变分自编码器的日线损率异常检测研究

  • 张国芳 ,
  • 刘通宇 ,
  • 温丽丽 ,
  • 郭果 ,
  • 周忠新 ,
  • 袁培森
展开
  • 1. 国家电网四川省电力公司, 成都 610041;
    2. 南京农业大学 信息科学技术学院, 南京 210095;
    3. 国家电网南瑞南京控制系统有限公司, 南京 211106
张国芳,女,硕士,高级工程师,研究方向为电能量计量、综合能源管控与服务.E-mail:zhanggf1261@sc.sgcc.com.cn

收稿日期: 2020-08-14

  网络出版日期: 2020-09-24

Research on abnormal detection of daily loss rate based on a variational auto-encoder

  • ZHANG Guofang ,
  • LIU Tongyu ,
  • WEN Lili ,
  • GUO Guo ,
  • ZHOU Zhongxin ,
  • YUAN Peisen
Expand
  • 1. State Grid Sichuan Electric Power Company, Chengdu 610041, China;
    2. College of Information Science and Technology, Nanjing Agricultural University, Nanjing 210095, China;
    3. NARI Technology Co. Ltd., Nanjing 211106, China

Received date: 2020-08-14

  Online published: 2020-09-24

摘要

采用一种基于自编码器的异常检测算法, 实现大规模日线损率数据的异常检测. 变分自编码器是一种利用反向传播算法使得输出值近似等于输入值的神经网络, 使用自编码器将原始日线损率时间序列编码, 在重建过程中记录每个时间点的重建概率, 当重建概率大于指定阈值时就判定其为异常数据. 本文利用真实日线损数据进行实验, 试验结果表明, 基于自编码器的日线损率异常检测算法具有较好的检测效果.

本文引用格式

张国芳 , 刘通宇 , 温丽丽 , 郭果 , 周忠新 , 袁培森 . 基于变分自编码器的日线损率异常检测研究[J]. 华东师范大学学报(自然科学版), 2020 , 2020(5) : 146 -155 . DOI: 10.3969/j.issn.1000-5641.202091013

Abstract

This paper adopts an anomaly detection algorithm based on a self-encoder to achieve anomaly detection of large-scale daily line loss rate data. A variational auto-encoder is a neural network that uses the backpropagation algorithm to make the output value approximately equal to the input value. It uses the auto-encoder to encode the original daily line loss rate time series and records the reconstruction possibility at each time point during the reconstruction process. When the reconstruction possibility is greater than a specified threshold, it is classified as anomaly data. In this paper, experiments were conducted on real daily line loss data. The test results show that the proposed algorithm for abnormal detection of daily line loss rate data based on an auto-encoder has good detection capability.

参考文献

[1] PASSERINI F, TONELLO A M. Smart grid monitoring using power line modems: Effect of anomalies on signal propagation[EB/OL]. (2019-01-21)[2020-07-01]. https://arxiv.org/pdf/1806.10991.pdf.
[2] FANG X, MISRA S, XUE G, et al. Smart grid — The new and improved power grid: A survey [J]. IEEE Communications Surveys & Tutorials, 2012, 14(4): 944-980.
[3] 林鸿, 方学民, 袁葆, 等. 电力物联网多渠道客户服务中台战略研究与设计 [J]. 供用电, 2019(6): 36-45
[4] 李炳森, 胡全贵, 陈小峰, 等. 电网企业数据中台的研究与设计 [J]. 电力信息与通信技术, 2019, 17(7): 29-34
[5] TAO F, ZHANG M, CHENG J, et al. Digital twin workshop: A new paradigm for future workshop [J]. Computer Integrated Manufacturing Systems, 2017, 23: 1-9.
[6] 杨林瑶, 陈思远, 王晓, 等. 数字孪生与平行系统:发展现状、对比及展望 [J]. 自动化学报, 2019, 45(11): 2001-2031
[7] CHANDOLA V, BNAERJEE A, KUMAR V. Anomaly detection for discrete sequences: A survey [J]. IEEE Transactions on Knowledge & Data Engineering, 2012, 24(5): 823-839.
[8] WITTEN I H, FRANK E. Data Mining: Practical Machine Learning Tools and Techniques [M]. 3rd ed. 北京:机械工业出版社, 2005.
[9] CHALAPATHY R, CHAWLA S. Deep learning for anomaly detection: A survey [EB/OL]. (2019-01-23)[2020-07-01]. https://arxiv.org/pdf/1901.03407.pdf.
[10] 杨漾, 张诗军, 陈丰, 等. 电力大数据平台建设及实时线损异常检测应用 [J]. 现代计算机, 2016(36): 10-16
[11] 刘凤魁. 基于密度峰值聚类算法的电力大数据异常值检测及用电行为分析研究 [D]. 北京:中国电力科学研究院, 2017.
[12] 梁跃. 基于机器学习的电力用户用电异常检测技术研究 [D]. 北京:北京邮电大学, 2019.
[13] 余翔, 陈国洪, 李霆, 等. 基于孤立森林算法的用电数据异常检测研究 [J]. 信息技术, 2018, 42(12): 88-92
[14] SCHöLKOPF B, PLATT J, HOFMANN T. Greedy layer-wise training of deep networks [J]. Advances in Neural Information Processing Systems, 2007, 19: 153-160.
[15] SEWAK M, SAHAY S K, RATHORE H. An overview of deep learning architecture of deep neural networks and autoencoders [J]. Journal of Computational and Theoretical Nanoscience, 2020, 17(1): 182-188.
[16] 王雅思, 姚鸿勋, 孙晓帅, 等. 深度学习中的自编码器的表达能力研究 [J]. 计算机科学, 2015, 42(09): 56-60
[17] 唐朝辉, 朱清新, 洪朝群, 等. 基于自编码器及超图学习的多标签特征提取 [J]. 自动化学报, 2016(7): 1014-1021
[18] 张雪菲, 程乐超, 白升利, 等. 基于变分自编码器的人脸图像修复 [J]. 计算机辅助设计与图形学学报, 2020(3): 401-409
[19] GOODFELLOW I, BENGIO Y, COURVILLE A. Deep Learning [M]. Massachusetts:The MIT Press, 2016.
[20] 宋辉, 代杰杰, 张卫东, 等. 基于变分贝叶斯自编码器的局部放电数据匹配方法 [J]. 中国电机工程学报, 2018, 38(19): 5869-5877
[21] KINGMA D, WELLING M. Auto-encoding variational bayes [EB/OL]. (2014-05-01)[2020-07-01]. https://arxiv.org/pdf/1312.6114.pdf.
[22] 翟正利, 梁振明, 周炜, 等. 变分自编码器模型综述 [J]. 计算机工程与应用, 2019, 55(3): 1-9
[23] CHANDOLA V, BANERJEE A, KUMAR V. Anomaly detection [J]. ACM Computing Surveys, 2009, 41(3): 1-58.
[24] AZUAJE F, WITTEN I, E F. WITTEN I H, et al. Data mining: Practical machine learning tools and techniques [J]. Biomedical Engineering Online - BIOMED ENG ONLINE, 2006(5): 1-2.
[25] AN J, CHO S. Variational autoencoder based anomaly detection using reconstruction probability[C]// 2015-2 Special Lecture on IE. 2015:1-10.
[26] WANG C, TINDEMANS S, PAN K, et al. Detection of false data injection attacks using the autoencoder approach [EB/OL]. (2020-05-22)[2020-07-01]. https://arxiv.org/pdf/2003.02229.pdf.
[27] WANG R, NIE K, WANG T, et al. Deep Learning for Anomaly Detection [C]//WSDM '20: Proceedings of the 13th International Conference on Web Search and Data Mining. 2020: 894-896.
[28] LIU F T, TING K M, ZHOU Z. Isolation forest [C]// 2008 Eighth IEEE International Conference on Data Mining. 2008: 413-422.
[29] TRAN T N, DRAB K, DASZYKOWSKI M. Revised DBSCAN algorithm to cluster data with dense adjacent clusters [J]. Chemometrics & Intelligent Laboratory Systems, 2013, 120: 92-96.
文章导航

/