河口海岸科学技术与可持续的生态系统

孟加拉湾低氧区历史概述

  • HOSSAIN Md Jaker ,
  • SHEIKH Aftab Uddin ,
  • 张经
展开
  • 1. 华东师范大学 河口海岸学国家重点实验室, 上海 200241, 中国
    2. 吉大港大学 海洋科学研究所, 吉大港 4331, 孟加拉国

收稿日期: 2020-04-21

  网络出版日期: 2021-01-22

Historical overview of hypoxia in the Bay of Bengal

  • Md Jaker HOSSAIN ,
  • Aftab Uddin SHEIKH ,
  • Jing ZHANG
Expand
  • 1. State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
    2. Institute of Marine Sciences, University of Chittagong, Chittagong 4331, Bangladesh

Received date: 2020-04-21

  Online published: 2021-01-22

摘要

世界沿海地区快速的经济发展和人口的增加, 以及农业和渔业生产的增加, 给沿海生态系统带来了巨大的环境压力. 环境压力的最主要症状是缺氧, 这是指低氧或贫氧(≤ 2 mg/L)的区域, 动物可能会窒息而死. 本研究旨在通过之前有效相关的文献并利用NOAA的世界大洋图集数据, 认知从20世纪70年代至2018年期间孟加拉湾低氧区历史概观. 除2018年, 至20世纪70年代以来, 孟加拉湾氧气浓度在一定程度上保持稳定, 在水深100 m (≤ 1.6 mg/L) 区域低氧区长期存在. 由于孟加拉湾在2013—2018年期间发生了一些热带气旋, 2018年地表和地下水中的氧气浓度突然增加. 次表层水中溶解氧含量的上升主要是由于剧烈的垂向混合、下沉流和上升流. 风暴导致的上升流会导致溶解氧含量的下降. 相比起中层水(100~500 m)中耗竭的氧浓度, 在水深0~100 m 和1000 m的区域氧浓度是较高的. 然而, 由于各种临近河流的大量淡水输入以及高降雨量, 孟加拉湾水体层化现象显著. 结合相关物理过程, 这种垂向水体分层控制了表层和次表层水的输运和垂向交换, 加剧了低氧区的形成, 进而影响此区域内浮游植物和水生生物的生长.

本文引用格式

HOSSAIN Md Jaker , SHEIKH Aftab Uddin , 张经 . 孟加拉湾低氧区历史概述[J]. 华东师范大学学报(自然科学版), 2020 , 2020(S1) : 109 -113 . DOI: 10.3969/j.issn.1000-5641.202092218

参考文献

1 DIAZ R J, ROSENBERG R. Spreading dead zones and consequences for marine ecosystems. Science, 2008, 321 (5891): 926- 929.
2 BYERS J E. Differential susceptibility to hypoxia aids estuarine invasion. Marine Ecology Progress Series, 2000, 203, 123- 132.
3 RAO C K, NAQVI S W A, KUMAR M D, et al. Hydrochemistry of the Bay of Bengal: Possible reasons for a different water-column cycling of carbon and nitrogen from the Arabian Sea. Marine Chemistry, 1994, 47 (3/4): 279- 290.
4 SHAMSAD M, FARUKH M A, CHOWDHURY M J R, et al. Sea Surface Temperature Anomaly in the Bay of Bengal in 2010. Journal of Environmental Science and Natural Resources, 2012, 5 (2): 77- 80.
5 FERNANDES L, BHOSLE N B, MATONDKAR S P, et al. Seasonal and spatial distribution of particulate organic matter in the Bay of Bengal. Journal of Marine Systems, 2009, 77 (1/2): 137- 147.
6 SOURAV D, ABHRA C, SANDIP G, et al. Characterizing the influence of tide on the physico-chemical parameters and nutrient variability in the coastal surface water of the northern Bay of Bengal during the winter season. Acta Oceanologica Sinica, 2015, 34 (12): 102- 111.
7 NAQVI S W A, DESOUSA S N, FONDEKAR S P, et al. Distribution of dissolved oxygen in the western Bay of Bengal. Mahasagar, 1979, 12 (1): 25- 34.
8 SATPATHY K K, PANIGRAHI S, MOHANTY A K, et al. Severe oxygen depletion in the shallow regions of the Bay of Bengal off Tamil Nadu Coast. Current Science, 2013, 104 (11): 1467- 1469.
9 PAULMIER A, RUIZ-PINO D. Oxygen minimum zones (OMZs) in the modern ocean. Progress in Oceanography, 2009, 80 (3/4): 113- 128.
10 SUOKHRIE T, SAALIM S M, SARASWAT R, et al. Indian monsoon variability in the last 2000 years as inferred from benthic foraminifera. Quaternary International, 2018, 479, 128- 140.
11 SARDESSAI S, RAMAIAH N, PRASANNA KUMAR S, et al. Influence of environmental forcing on the seasonality of dissolved oxygen and nutrients in the Bay of Bengal. Journal of Marine Research, 2007, 65 (2): 301- 316.
12 MADHU N V, MAHESWARAN P A, JYOTHIBABU R, et al. Enhanced biological production off Chennai triggered by October 1999 super cyclone (Orissa). Current Science, 2002, 82 (12): 1472- 1479.
13 PAVELA J S, ROSS J L, CHITTENDEN J M E. Sharp reductions in abundance of fishes and benthic macroinvertebrates in the Gulf of Mexico off Texas associated with hypoxia. Gulf of Mexico Science, 1983, 6 (2): 11.
文章导航

/