物理学与电子学

光学微腔中WSe2激子与光子耦合效应的研究

  • 梁爽 ,
  • 钟义驰 ,
  • 谢微
展开
  • 华东师范大学 物理与电子科学学院, 上海 200241

收稿日期: 2020-03-06

  网络出版日期: 2021-01-25

基金资助

国家自然科学基金(11674097)

Coupling behavior of WSe2 exciton and photon in an optical microcavity

  • Shuang LIANG ,
  • Yichi ZHONG ,
  • Wei XIE
Expand
  • School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China

Received date: 2020-03-06

  Online published: 2021-01-25

摘要

研究了300 K下, 自制的法布里-珀罗(Fabry–Pérot, F-P)半导体微腔中, 光场与WSe2单分子薄膜激子之间的强弱耦合作用. 利用集成角分辨功能的显微荧光/白光反射光谱系统研究了样品的光学性质, 并在强耦合区间内看到了激子极化激元的形成, 对应的拉比分裂能量为46.7 meV. 理论拟合结果跟实验现象吻合, 为激子极化激元相干特性的进一步研究奠定了基础, 也为未来的工业光电器件应用提供了思路.

本文引用格式

梁爽 , 钟义驰 , 谢微 . 光学微腔中WSe2激子与光子耦合效应的研究[J]. 华东师范大学学报(自然科学版), 2021 , 2021(1) : 112 -118 . DOI: 10.3969/j.issn.1000-5641.202022003

Abstract

In this paper, we study the strong and weak coupling between excitons of a WSe2 monomolecular thin film and a light field in a self-made Fabry–Pérot semiconductor microcavity at 300 K. The optical properties of the sample were studied using a micro-fluorescence / white light reflection spectroscopy system with integrated angular resolution; the formation of exciton polaritons was observed in the strong coupling region, corresponding to a Rabi splitting energy of 46.7 meV. The theoretical fitting results agree with the experimental phenomena. This lays the foundation for further research on the coherent properties of exciton polaritons, and the study also provide ideas for the application of industrial optoelectronic devices in the future..

参考文献

1 WEISBUCH C, NISHIOKA M, ISHIKAWA A, et al. Physical Review Letters, Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity. 1992, 69 (23): 3314- 3317.
2 DENG H, WEIHS G, SANTORI C, et al. Science, Condensation of semiconductor microcavity exciton polaritons. 2002, 298 (5591): 199- 202.
3 WOUTERS M, CARUSOTTO I. Physical Review Letters, Excitations in a nonequilibrium Bose-Einstein condensate of exciton polaritons. 2007, 99 (14): 140402.
4 KASPRZAK J, RICHARD M, KUNDERMANN S, et al. Nature, Bose-Einstein condensation of exciton polaritons. 2006, 443, 409- 414.
5 BALILI R, HARTWELL V, SNOKE D, et al. Science, Bose-Einstein condensation of microcavity polaritons in a trap. 2007, 316 (5827): 1007- 1010.
6 UTSUNOMIYA S, TIAN L, ROUMPOS G, et al. Nature Physics, Observation of Bogoliubov excitations in exciton-polariton condensates. 2008, 4 (9): 700- 705.
7 AMO A, SANVITTO D, LAUSSY F P, et al. Nature, Collective fluid dynamics of a polariton condensate in a semiconductor microcavity. 2009, 457, 291- U3.
8 AMO A, LEFRERE J, PIGEON S, et al. Nature Physics, Superfluidity of polaritons in semiconductor microcavities. 2009, 5 (11): 805- 810.
9 SICH M, KRIZHANOVSKII D N, SKOLNICK M S, et al. Nature Photonics, Observation of bright polariton solitons in a semiconductor microcavity. 2012, 6 (1): 50- 55.
10 WERTZ E, FERRIER L, SOLNYSHKOV D D, et al. Nature Physics, Spontaneous formation and optical manipulation of extended polariton condensates. 2010, 6 (11): 860- 864.
11 GEIM A K. Science, Graphene: Status and prospects. 2009, 324 (5934): 1530- 1534.
12 GEIM A K, NOVOSELOV K S. Nature Materials, The rise of graphene. 2007, 6 (3): 183- 191.
13 MANZELI S, OVCHINNIKOV D, PASQUIER D, et al. Nature Reviews Materials, 2D transition metal dichalcogenides. 2017, 2 (8): 17033.
14 SHI W, YE J T, ZHANG Y J, et al. Scientific Reports, Superconductivity series in transition metal dichalcogenides by ionic gating. 2015, 8 (5): 12534.
15 JO S, COSTANZO D, BERGER H, et al. Nano Letters, Electrostatically induced superconductivity at the surface of WS2. 2015, 15 (2): 1197- 1202.
16 MAK K F, SHAN J. Nature Photonics, Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. 2016, 10 (4): 216- 226.
17 PU J, TAKENOBU T S. Advanced materials, Monolayer transition metal dichalcogenides as light sources. 2018, 30 (33): 1707627.
18 KOPPENS F H L, MUELLER T, AVOURIS P, et al. Nature Nanotechnology, Photodetectors based on graphene, other two-dimensional materials and hybrid systems. 2014, 9 (10): 780- 793.
19 WANG G, CHERNIKOV A, GLAZOV M M, et al. Reviews of Modern Physics, Colloquium: Excitons in atomically thin transition metal dichalcogenides. 2018, 90 (2): 021001.
20 MACIEJ K, MACLEJ R, MOLAS A A, et al. Nanophotonics, Optical properties of atomically thin transition metal dichalcogenides: Observations and puzzles. 2017, 6 (6): 1289- 1308.
21 BALLARINI D, DE GIORGI M, CANCELLIERI E, et al. Nature Communication, All-optical polariton transistor. 2013, 4 (5): 1778.
22 DREISMANN A, OHADI H, REDONDO Y, et al. Nature Materials, A sub-femtojoule electrical spin-switch based on optically trapped polariton condensates. 2016, 15 (10): 1074- 1078.
23 CHRISTOPOULOS S, VON HOGERSTHAL G, BALDASSARRI H, et al. Physical Review Letters, Room-temperature polariton lasing in semiconductor microcavities. 2007, 98 (12): 126405.
24 STANLET R P, HOUDRE R, OESTER U, et al. Applied Physics Letters, Ultrahigh finesse microcavity with distributed Bragg reflectors. 1994, 65 (15): 1883- 1885.
25 AKAHANE Y, ASANO T, NODA S, et al. Nature, High-Q photonic nanocavity in a two-dimensional photonic crystal. 2003, 425, 944- 947.
26 SRINIVASAN K, PAINTER O. Nature, Linear and nonlinear optical spectroscopy of a strongly coupled microdisk-quantum dot system. 2007, 450, 862- 865.
27 SPLENDIANI A, SUN L, ZHANG Y, et al. Nano Letters, Emerging photoluminescence in monolayer MoS2. 2010, 10 (4): 1271- 1275.
28 MAK K F, LEE C, HONE J, et al. Physical Review Letters, Atomically thin MoS2: A new direct-gap semiconductor . 2010, 105 (13): 136805.
29 NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Science, Electric field effect in atomically thin carbon films. 2004, 306 (5696): 666- 669.
30 YUN W S, HAN S W, HONG S C, et al. Physical Review B, Thickness and strain effects on electronic structures of transition metal dichalcogenides: 2H-MX2 semiconductors (M = Mo, W; X = S, Se, Te) . 2012, 85 (3): 033305.
31 GIOVANNA P, LUCIO C A. Physical Review B, Exciton-light coupling in single and coupled semiconductor microcavities: Polariton dispersion and polarization splitting. 1999, 5082, 59.
文章导航

/