物理学与电子学

二维电磁亥姆霍兹腔中回音壁模式研究

  • 王倩婧 ,
  • 杜骏杰
展开
  • 华东师范大学 物理与电子科学学院, 上海 200241

收稿日期: 2020-03-31

  网络出版日期: 2021-01-28

基金资助

国家自然科学基金(11474098)

Whispering gallery mode in a two-dimensional electromagnetic Helmholtz cavity

  • Qianjing WANG ,
  • Junjie DU
Expand
  • School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China

Received date: 2020-03-31

  Online published: 2021-01-28

摘要

基于严格的广义双级数方法, 研究了二维电磁亥姆霍兹腔内回音壁模式的激发; 在给出几种回音壁模式的激发波长的同时, 探讨了入射角、亥姆霍兹腔开口大小对回音壁模式的影响. 结果表明, 回音壁模式对入射波长和腔开口大小的改变非常敏感, 但相比而言, 固定腔的方位角不变时, 入射角在较宽范围内的变化并不影响模式的激发. 因此, 腔的开口大小对亥姆霍兹腔的性能有很大影响, 是亥姆霍兹腔设计中需要重点关注的参量. 而当这些亥姆霍兹腔用于构建人工电磁材料时, 由于回音壁模式可在较宽的入射角下激发, 因而不需要严格要求每个腔的开口方向, 材料的加工难度也不大.

本文引用格式

王倩婧 , 杜骏杰 . 二维电磁亥姆霍兹腔中回音壁模式研究[J]. 华东师范大学学报(自然科学版), 2021 , 2021(1) : 119 -128 . DOI: 10.3969/j.issn.1000-5641.202022006

Abstract

In this paper, whispering gallery mode (WGM) excited in a two-dimensional electromagnetic Helmholtz cavity are studied using a rigorous, generalized dual series approach. The excitation wavelengths of several whispering gallery modes are given, and the dependence of electromagnetic whispering gallery modes on the angle of incidence and the angular width of opening cavities is investigated. It was found that WGM are very sensitive to slight changes in wavelength or the angular width of the opening; at the same time, WGM can be excited across a wide range of incident angles given a fixed orientation angle of the cavity. This shows that the angular width of the opening has a significant influence on the performance of Helmholtz cavities and hence is a key parameter in their design. On the other hand, given the lack of sensitivity to the incident angle, no particular specification is needed when designing an artificially structured electromagnetic material using these Helmholtz cavities; accordingly, the fabrication difficulty is relatively low.

参考文献

1 LORD RAYLEIGH O M F R S. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, The problem of the whispering gallery. 1910, 20 (120): 1001- 1004.
2 MIE G. Annalen der Physik, Beitr?ge zur optik trüber medien, speziell kolloidaler metall?sungen. 1908, 330 (3): 377- 445.
3 RICHTMYER R D. Journal of Applied Physics, Dielectric resonators. 1939, 10 (6): 391- 398.
4 GARRETT C G B, KAISER W, BOND W L. Physical Review, Stimulated emission into optical whispering modes of spheres. 1961, 124 (6): 1807- 1809.
5 WALSH P, KEMENY G. Journal of Applied Physics, Laser operation without spikes in a ruby ring. 1963, 34 (4): 956- 957.
6 MCCALL S L, LEVI A F J, SLUSHER R E, et al. Applied Physics Letters, Whispering-gallery mode microdisk lasers. 1992, 60 (3): 289- 291.
7 SLUSHER R E, LEVI A F J, MOHIDEEN U, et al. Applied Physics Letters, Threshold characteristics of semiconductor microdisk lasers. 1993, 63 (10): 1310- 1312.
8 LEVI A F J, SLUSHER R E, MCCALL S L, et al. Applied Physics Letters, Directional light coupling from microdisk lasers. 1993, 62 (6): 561- 563.
9 XIA F N, SEKARIC L, VLASOV Y. Nature Photonics, Ultracompact optical buffers on a silicon chip. 2007, (1): 65- 71.
10 YANIK M F, FAN S H. Physical Review Letters, Stopping light all optically. 2004, 92 (8): 083901.
11 DONG C H, HE L, XIAO Y F, et al. Applied Physics Letters, Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing . 2009, 94 (23): 839- 842.
12 VOLLMER F, ARNOLD S. Nature Methods, Whispering-gallery-mode biosensing: Label-free detection down to single molecules. 2008, 5 (7): 591- 596.
13 VOLLMER F, BRAUN D, LIBCHABER A, et al. Applied Physics Letters, Protein detection by optical shift of a resonant microcavity. 2002, 80 (21): 4057- 4059.
14 KIPPENBERG T J, ROKHSARI H, CARMON T, et al. Physical Review Letters, Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity. 2005, 95 (3): 033901.
15 MA R, SCHLIESSER A, DEL’HAYE P, et al. Optics Letters, Radiation-pressure-driven vibrational modes in ultra-high-Q silica microspheres . 2007, 32 (15): 2200- 2202.
16 KIPPENBERG T J, VAHALA K J. Science, Cavity optomechanics: Back-action at the mesoscale. 2008, 321 (5893): 1172- 1176.
17 SCHLIESSER A, KIPPENBERG T J. Advances in Atomic, Molecular, and Optical Physics, Cavity optomechanics with whispering-gallery-mode optical micro-resonators. 2010, 58, 207- 323.
18 BRAGINSKY V B, GORODETSKY M L, ILCHENKO V S. Physics Letters A, Quality-factor and nonlinear properties of optical whispering-gallery modes. 1989, 137 (7/8): 393- 397.
19 HONDA K, GARMIRE E, WILSON K. Journal of Lightwave Technology, Characteristics of an integrated optics ring resonator fabricated in glass. 1984, 2 (5): 714- 719.
20 ARMANI D K, KIPPENBERG T J, SPILLANE S M, et al. Nature, Ultra-high-Q toroid microcavity on a chip . 2003, 421 (6926): 925- 928.
21 MOON H J, CHOUGH Y T, AN K. Physical Review Letters, Cylindrical microcavity laser based on the evanescent-wave-coupled gain. 2000, 85 (15): 3161- 3164.
22 COLLOT L, LEFèVRE-SEGUIN V, BRUNE M, et al. Europhysics Letters, Very high-Q whispering-gallery mode resonances observed on fused silica microspheres . 2007, 23 (5): 327- 334.
23 ILCHENKO V S, SAVCHENKOV A A, MATSKO A B, et al. Physical Review Letters, Nonlinear optics and crystalline whispering gallery mode cavities. 2004, 92 (4): 043903.
24 SAVCHENKOV A A, ILCHENKO V S, MATSKO A B, et al. Physical Review A, Kilohertz optical resonances in dielectric crystal cavities. 2004, 70 (5): 051804.
25 LI B B, WANG Q Y, YUN F X, et al. Applied Physics Letteres, On chip, high-sensitivity thermal sensor based on high-Q polydimethylsiloxane-coated microresonator . 2010, 96 (25): 251109.
26 ZENINARI V, KAPITANOV V A, COURTOIS D, et al. Infrared Physics and Technology, Design and characteristics of a differential Helmholtz resonant photoacoustic cell for infrared gas detection. 1999, 40 (1): 1- 23.
27 FANG N, XI D J, XU J Y, et al. Nature Materials, Ultrasonic metamaterials with negative modulus. 2006, 5 (6): 452- 456.
28 LEE S H, PARK C M, SEO Y M, et al. Physical Review Letters, Composite acoustic medium with simultaneously negative density and modulus. 2010, 104 (5): 054301.
29 SENIOR T B A. IEEE Transactions on Electromagnetic Compatibility, Electromagnetic field penetration into a cylindrical cavity. 1976, EMC-18 (2): 71- 73.
30 BONBARDT J N JR , LIBELO L F. The Scattering of electromagnetic radiation by apertures’ Ⅴ. Surface current, tangential aperture electric field, and back-scattering cross-section for the axially slotted cylinder at normal, symmetric incidence[R]. NASA STI/Recon Technical Report N, 1975.
31 NEGANOV V A, SARYCHEV A A. Journal of Communications Technology and Electronics, Diffraction of a plane electromagnetic wave by a circulardielectric cylinder with a finite-length perfectly conducting metal strip on the cylinder's lateral surface. 2008, 53 (11): 1315- 1322.
32 ZIOLKOWSKI R W, GRANT J B. IEEE Transactions on Antennas and Propagation, Scattering from cavity-backed apertures: The generalized dual series solution of the concentrically loadedE-pol slit cylinder problem. 1987, 35 (5): 504- 528.
33 JOHNSON W A, ZIOLKOWSKI R W. Radio Science, The scattering of an H-polarized plane wave from an axially slotted infinite cylinder: A dual series approach. 1984, 19 (1): 275- 291.
文章导航

/