收稿日期: 2019-12-18
网络出版日期: 2021-01-28
基金资助
上海市科委社发处项目(19DZ1205102)
Study on the performance of I-doped TiO2 nanotube arrays for planar photocatalytic fuel cells
Received date: 2019-12-18
Online published: 2021-01-28
采用阳极氧化法制备了I掺杂TiO2纳米管阵列(I-doped TiO2 Nanotubes Arrays, ITNA)光阳极, 该电极表现出比TNA更加优异的降解性能. 将ITNA与Pt电极组合得到的平面光催化燃料电池(planar Photocatalytic Fuel Cell, p-PFC)在亚甲基蓝(Methylene Blue, MB)浓度为6 mg·L–1、极板间距为1.0 cm时脱色率达到最大, 为93.1%. MB的降解发生在ITNA表面, 为限速步骤. 对比了p-PFC和传统PFC结构对MB和其他有机物的降解, p-PFC中h+和·OH的产生和传质优于其他结构, 具有更高的光催化性能.
周君 , 席清华 , 黄宜强 , 聂耳 , 孙卓 . I掺杂TiO2纳米管阵列平面光催化燃料电池的性能研究[J]. 华东师范大学学报(自然科学版), 2021 , 2021(1) : 165 -175 . DOI: 10.3969/j.issn.1000-5641.201922019
The photoanode of I-doped TiO2 nanotube arrays (ITNA) prepared by anodization exhibited better degradation performance than TNA. The planar photocatalytic fuel cell (p-PFC) obtained by combining ITNA and Pt electrodes achieved a maximum decolorization rate of 93.1% when the concentration of methylene blue (MB) was 6 mg·L–1and the electrode plate spacing was 1.0 cm. The degradation of MB occurred on the surface of ITNA, which was a rate-limiting step. Compared to other structures, p-PFC had a higher photocatalytic performance and better production of h+ and ·OH, while degrading MB and other organics.
1 | ZHAO H J, JIANG D L, ZHANG S Q, et al. Analytical Chemistry, Development of a direct photoelectrochemical method for determination of chemical oxygen demand. 2004, 76 (1): 155- 160. |
2 | ZANONI M V B, SENE J J, ANDERSON M A. Journal of Photochemistry and Photobiology A: Chemistry, Photoelectrocatalytic degradation of remazol brilliant orange 3R on titanium dioxide thin-film electrodes. 2003, 157 (1): 55- 63. |
3 | REHMAN S, ULLAH R, BUTT A M, et al. Journal of Hazardous Materials, Strategies of making TiO2 and ZnO visible light active . 2009, 170 (2/3): 560- 569. |
4 | LI X Z, LI F B, FAN C M, et al. Water Research, Photoelectrocatalytic degradation of humic acid in aqueous solution using a Ti/TiO2 mesh photoelectrode . 2002, 36 (9): 2215- 2224. |
5 | WANG Y W, HUANG Y, HO W K, et al. Journal of Hazardous Materials, Biomolecule-controlled hydrothermal synthesis of C-N-S-tridoped TiO2 nanocrystalline photocatalysts for NO removal under simulated solar light irradiation . 2009, 169 (1/2/3): 77- 87. |
6 | XIE D M, FENG S J, LIN Y, et al. Chinese Science Bulletin, Preparation of porous nanocrystalline TiO2 electrode by screen-printing technique . 2007, 52 (18): 2481- 2485. |
7 | LIANOS P. Journal of Hazardous Materials, Production of electricity and hydrogen by photocatalytic degradation of organic wastes in a photoelectrochemical cell: The concept of the photofuelcell: A review of a re-emerging research field. 2011, 185 (2/3): 575- 590. |
8 | WU Z Y, ZHAO G H, ZHANG Y J, et al. Journal of Materials Chemistry A, A solar-driven photocatalytic fuel cell with dual photoelectrode for simultaneous wastewater treatment and hydrogen production. 2015, 3 (7): 3416- 3424. |
9 | LIU Y B, LI J H, ZHOU B X, et al. Water Research, Efficient electricity production and simultaneously wastewater treatment via a high-performance photocatalytic fuel cell. 2011, 45 (13): 3991- 3998. |
10 | SZKODA M, SIUZDAK K, LISOWSKA-OLEKSIAK A. Journal of Solid State Electrochemistry, Optimization of electrochemical doping approach resulting in highly photoactive iodine-doped titania nanotubes. 2016, 20 (2): 563- 569. |
11 | TIAN S Y, GUO J H, ZHAO C, et al. Journal of Nanoscience and Nanotechnology, Preparation of cellulose/graphene oxide composite membranes and their application in removing organic contaminants in wastewater. 2019, 19 (4): 2147- 2153. |
12 | LIU Y B, LI J H, ZHOU B X, et al. Chemical Communications, A TiO2-nanotube-array-based photocatalytic fuel cell using refractory organic compounds as substrates for electricity generation . 2011, 47 (37): 10314- 10316. |
13 | DENG P C, HU J Z, WANG H Z, et al. Journal of Advanced Oxidation Technologies, Hydrothermal preparation and comparative study of halogen-doping TiO2 photocatalysts . 2010, 13 (2): 200- 205. |
14 | SU W Y, ZHANG Y F, LI Z H, et al. Langmuir, Multivalency iodine doped TiO2: Preparation, characterization, theoretical studies, and visible-light photocatalysis . 2008, 24 (7): 3422- 3428. |
15 | TOJO S, TACHIKAWA T, FUJITSUKA M, et al. The Journal of Physical Chemistry C, Iodine-doped TiO2 photocatalysts: Correlation between band structure and mechanism . 2008, 112 (38): 14948- 14954. |
16 | WANG W A, SHI Q, WANG Y P, et al. Applied Surface Science, Preparation and characterization of iodine-doped mesoporous TiO2 by hydrothermal method . 2011, 257 (8): 3688- 3696. |
17 | DEVI L G, KAVITHA R. Applied Catalysis B: Environmental, A review on non metal ion doped titania for the photocatalytic degradation of organic pollutants under UV/solar light: Role of photogenerated charge carrier dynamics in enhancing the activity. 2013, 140, 559- 587. |
18 | MA Y, FU J W, XIA T, et al. Applied Surface Science, Low temperature synthesis of iodine-doped TiO2 nanocrystallites with enhanced visible-induced photocatalytic activity . 2011, 257 (11): 5046- 5051. |
19 | LIU D, WANG J Q, ZHOU J, et al. Chemical Engineering Journal, Fabricating I doped TiO2 photoelectrode for the degradation of diclofenac: Performance and mechanism study . 2019, 369, 968- 978. |
20 | DAGHRIR R, DROGUI P, ROBERT D. Journal of Photochemistry & Photobiology, A: Chemistry, Photoelectrocatalytic technologies for environmental applications. 2012, 238, 41- 52. |
21 | LEE W J, RAMASAMY E, LEE D Y, et al. Journal of Photochemistry and Photobiology A: Chemistry, Glass frit overcoated silver grid lines for nano-crystalline dye sensitized solar cells. 2006, 183 (1/2): 133- 137. |
22 | JANZEN E G, KOTAKE Y, HINTON R D. Free Radical Biology and Medicine, Stabilities of hydroxyl radical spin adducts of PBN-type spin traps. 1992, 12 (2): 169- 173. |
23 | GRATZEL M. Nature, Photoelectrochemical cells. 2001, 414 (6861): 338- 344. |
24 | GARCIA-SEGURA S, BRILLAS E. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, Applied photoelectrocatalysis on the degradation of organic pollutants in wastewaters. 2017, 31, 1- 35. |
25 | ANTONIADOU M, LIANOS P. Applied Catalysis B: Environmental, Production of electricity by photoelectrochemical oxidation of ethanol in a photo fuel cell. 2010, 99 (1/2): 307- 313. |
26 | SU Y L, XIAO Y T, FU X, et al. Materials Research Bulletin, Photocatalytic properties and electronic structures of iodine-doped TiO2 nanotubes . 2009, 44 (12): 2169- 2173. |
27 | ZHOU L, DENG J, ZHAO Y B, et al. Materials Chemistry and Physics, Preparation and characterization of N-I co-doped nanocrystal anatase TiO2 with enhanced photocatalytic activity under visible-light irradiation . 2009, 117 (2/3): 522- 527. |
28 | HO-KIMURA S, MONIZ S J A, HANDOKO A D, et al. Journal of Materials Chemistry A, Enhanced photoelectrochemical water splitting by nanostructured BiVO4-TiO2 composite electrodes . 2014, 2 (11): 3948- 3953. |
29 | ANTONIADOU M, LIANOS P. Catalysis Today, Photoelectrochemical oxidation of organic substances over nanocrystalline titania: Optimization of the photoelectrochemical cell. 2009, 144 (1/2): 166- 171. |
30 | MENG X C, ZHANG Z S, LI X G. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, Synergetic photoelectrocatalytic reactors for environmental remediation: A review. 2015, 24, 83- 101. |
31 | MATSUOKA M, KITANO M, FUKUMOTO S, et al. Catalysis Today, The effect of the hydrothermal treatment with aqueous NaOH solution on the photocatalytic and photoelectrochemical properties of visible light-responsive TiO2 thin films . 2008, 132 (1/2/3/4): 159- 164. |
32 | ANTONIADOU M, LIANOS P. Applied Catalysis B, Environmental, Production of electricity by photoelectrochemical oxidation of ethanol in a photo fuel cell. 2010, 99 (1/2): 307- 313. |
33 | ANTONIADOU M, KONDARIDES D I, LABOU D, et al. Solar Energy Materials and Solar Cells, An efficient photoelectrochemical cell functioning in the presence of organic wastes. 2009, 94 (3): 592- 597. |
/
〈 |
|
〉 |