物理学与电子学

基于量子理论的句子相似度研究

  • 孟冰卿 ,
  • 马雷
展开
  • 华东师范大学 物理与电子科学学院, 上海 200241

收稿日期: 2019-11-21

  网络出版日期: 2021-01-28

Study on sentence similarity based on quantum theory

  • Bingqing MENG ,
  • Lei MA
Expand
  • School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China

Received date: 2019-11-21

  Online published: 2021-01-28

摘要

量子理论所具备的叠加、纠缠、不相容和干涉等特征使其成为优秀的建模框架. 研究了量子理论在自然语言理解方面的应用潜力. 在自然语言句子匹配任务上, 探讨了量子理论作为一种形式化框架捕捉句子、词语的语义和语义建模上的能力: 利用量子态构建句子的语义Hilbert空间, 计算句子信息变换过程中信息的保真度; 与此同时, 将量子理论与Word Embedding技术巧妙结合, 在高维低秩向量空间中表示单词或概念, 求取句子的相似性. 在一个真实业务场景中构造的问句匹配数据集上, 模拟数据表明, 所提出的方法相比于经典方法取得了更好的效果, 为以后进行多个句子的相似度研究提供了新的思路, 也是计算机科学与量子理论学科交叉研究领域的一个突破, 符合当下研究的方向.

本文引用格式

孟冰卿 , 马雷 . 基于量子理论的句子相似度研究[J]. 华东师范大学学报(自然科学版), 2021 , 2021(1) : 60 -66 . DOI: 10.3969/j.issn.1000-5641.201922018

Abstract

Quantum theory has the characteristics of superposition, entanglement, incompatibility, and interference, which make it an excellent modeling framework. For the purpose of sentence matching, we explore the ability of quantum theory as a framework to capture sentence meaning and model semantic processes. We use quantum states to construct the semantic Hilbert space and calculate the fidelity of information during sentence transformation. The similarity of sentences is subsequently determined by using word embedding technology to represent words or concepts in semantic vector spaces. Simulation data showed that the proposed method achieved better results than traditional methods for sentence matching datasets constructed on real business scenarios. Hence, this paper provides a new idea for similarity research of multiple sentences and introduces a breakthrough in interdisciplinary research between computer science and quantum theory, in line with current research trends.

参考文献

1 CANCHO R F I, SOLé R V, K?HLE R. Physical Review E, Patterns in syntactic dependency networks. 2004, 69, 051915.
2 GóMEZ-RODRíGUEZ C, FERRER-I-CANCHO R. Physical Review E, Scarcity of crossing dependencies: A direct outcome of a specific constraint?. 2017, 96, 062304.
3 BLACOE W, KASHEFI E, LAPATA M. A quantum-theoretic approach to distributional semantics//[C] Human Language Technologies: Conference of the North American Chapter of the Association of Computational Linguistics, Proceedings. Association for Computational Linguistics, 2013: 847-857.
4 LI Q C, WANG B Y, MELUCCI M. CNM: An interpretable complex-valued network for matching[EB/OL]. (2019-04-10)[2019-10-12]. https://arxiv.org/pdf/1904.05298.pdf.
5 LI Q C, UPRETY S, WANG B Y, et al. Quantum-inspired complex word embedding[EB/OL]. (2018-05-29)[2019-10-12]. https://arxiv.org/pdf/1805.11351.pdf.
6 YAO X W, WANG H Y, LIAO Z Y, et al. Physical Review X, Quantum image processing and its application to edge detection: Theory and experiment. 2017, 7 (3): 031041.
7 QU Z Q, YANG Z J, CUI N R, et al. Journal of Biological Chemistry, Gating of inward rectifier K+ channels by proton-mediated interactions of N- and C-terminal domains. 2000, 275 (41): 31573- 31580.
8 CAI Y Q, LU X W, JIANG N. Chinese Journal of Electronics, A survey on quantum image processing. 2018, 27 (4): 718- 727.
9 REBENTROST P, GUPT B, BROMLEY T R. Physical Review A, Quantum computational finance: Monte Carlo pricing of financial derivatives. 2018, 98, 022321.
10 MASOLIVER J. Journal of Statistical Physics, Book review: Quantum finance, path integrals and hamiltonians for options and interest rates. 2005, 120 (1): 417- 418.
11 NIELSEN M A, CHUANG I L. Quantum Computation and Quantum Information [M]. 10th Anniversary ed. New York: Cambridge University Press, 2010.
12 POTHOS E M, BUSEMEYER J R. Behavioral and Brain Sciences, Quantum principles in psychology: The debate, the evidence, and the future. 2013, 36 (3): 310- 327.
13 BUSEMEYER J R, BRUZA P D. Quantum Models of Cognition and Decision [M]. New York: Cambridge University Press, 2012: 28-98.
14 AERTS D. Journal of Mathematical Psychology, Quantum structure in cognition. 2009, 53 (5): 314- 348.
15 BRUZA P D, LAWLESS W, VAN RIJSBERGEN K, et al. Quantum Interaction: Proceedings of the Second Quantum Interaction Symposium - Qi-2008 [M]. [S.l]: [s.n], 2008.
16 周法国, 杨炳儒. 计算机工程与应用, 句子相似度计算新方法及在问答系统中的应用. 2008, 44 (1): 165- 168.
17 RIBADAS F J, VILARES M, VILARES J. Semantic similarity between sentences through approximate tree matching [C]// IbPRIA 2005: Pattern Recognition and Image Analysis. Berlin: Springer, 2005: 638-646. DOI: 10.1007/11492542_78.
18 HUANG G Y, SHENG J Q. Measuring similarity between sentence fragments [C]// Proceedings of the 2012 4th International Conference on Intelligent Human-Machine Systems and Cybernetics. IEEE, 2012: 327-330. DOI: 10.1109/IHMSC.2012.88.
19 赵谦, 荆琪, 李爱萍, 等. 计算机工程与科学, 一种基于语义与句法结构的短文本相似度计算方法. 2018, 40 (7): 1287- 1294.
20 钟晓阳. 基于WordNet的概念语义相似度计算及其应用研究 [D].山东 曲阜: 曲阜师范大学, 2017.
21 黄洪, 陈德锐. 浙江工业大学报, 基于语义依存的汉语句子相似度改进算法. 2017, 45 (1): 6- 9.
22 田堃, 柯永红, 穗志方. 中文信息报, 基于语义角色标注的汉语句子相似度算法. 2016, 30 (6): 126- 132.
23 HEALEY R. The Philosophical Review, Book review: The structure and interpretation of quantum mechanics by R. I. G. Hughes. 1992, 101 (3): 720- 723.
24 ISHAM C J, MAYER M. Physics Today, Lectures on quantum theory: Mathematical and structural foundations. 1996, 49 (8): 66.
25 HIROAKI T. Physical Review A, Information and fidelity in projective measurements. 2012, 85 (2): 022124.
26 RUSKAI M B. Reviews in Mathematical Physics, Beyond strong subadditivity? Improved bounds on the contraction of generalized relative entropy. 1994, 6 (5a): 1147- 1161.
27 ?YCZKOWSKI K, SOMMERS H J. Physical Review A, Average fidelity between random quantum states. 2005, 71 (3): 032313.
28 MIKOLOV T, SUTSKEVER I, CHEN K, et al. Distributed representations of words and phrases and their compositionality [C/OL]//Advances in Neural Information Processing Systems 26(NIPS 2013).[2019-10-02]. https://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf.
文章导航

/