物理学与电子学

核物质的低能有效场论研究

  • 潘廷纬 ,
  • 杨继锋
展开
  • 华东师范大学 物理与电子科学学院, 上海 200241

收稿日期: 2020-04-01

  网络出版日期: 2021-01-28

基金资助

国家自然科学基金(11435005)

Low-energy effective field theory study of nuclear matter

  • Tingwei PAN ,
  • Jifeng YANG
Expand
  • School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China

Received date: 2020-04-01

  Online published: 2021-01-28

摘要

采用低能有效场论分析了核物质和零温费米系统; 通过严格求解1S0分波Bethe-Goldstone方程(Bethe-Goldstone Equation, BGE), 得到了闭合形式的Brückner G矩阵, 并完成了其非微扰重整化. 在对理论参数的值进行选取之后, 完全了在Brückner G矩阵框架下, 分析包括密度背景中的配对问题以及费米系统单粒子能量在内的物理性质. 此外还将本文的框架和结果与其他文献进行了比较.

本文引用格式

潘廷纬 , 杨继锋 . 核物质的低能有效场论研究[J]. 华东师范大学学报(自然科学版), 2021 , 2021(1) : 82 -91 . DOI: 10.3969/j.issn.1000-5641.202022007

Abstract

In this study, the low-energy effective field theory approach is used to analyze nuclear matter and a zero-temperature Fermi system. By solving the Bethe-Goldstone equation (BGE) in the 1S0 channel, we obtain the closed-form Brückner G matrix and derive its renormalized non-perturbative form. Upon selecting values for relevant parameters, a number of physical issues are analyzed with the Brückner G matrix, such as pairing and single particle energy of a Fermi system in the density background. Lastly, the framework and results are compared with those published in the literature.

参考文献

1 CHADWICK J. Nature, Possible existence of a neutron. 1932, 129 (3252): 312- 312.
2 黄建华. 核子-核子散射与非微扰重整化 [D]. 上海: 华东师范大学, 2004.
3 WEINBERG S. Physica A, Phenomenological Lagrangians. 1979, 96 (1/2): 327- 340.
4 WEINBERG S. Physics Letters B, Nuclear forces from chiral Lagrangians. 1990, 251 (2): 288- 292.
5 王盼盼. 核子-核子低能散射的有效场论研究 [D]. 上海: 华东师范大学, 2013.
6 KAPLAN D B, SAVAGE M J, WISE M B. Physics Letters B, A new expansion for nucleon-nucleon interactions. 1998, 424 (3): 390- 396.
7 EPELBAUM E, GL?CKLE W, MEI?NER U. Nuclear Physics A, Nuclear forces from chiral Lagrangians using the method of unitary transformation Ⅱ: The two-nucleon system. 2000, 671 (1): 295- 331.
8 ENTEM D R, MACHLEIDT R. Physical Review C, Chiral 2π exchange at fourth order and peripheral NN scattering. 2002, 66 (1): 014002.
9 HAMMER H W, FURNSTAHL R J. Nuclear Physics A, Effective field theory for dilute Fermi systems. 2000, 678 (3): 277- 294.
10 STEELE J V. Effective field theory power counting at finite density [EB/OL]. (2000-11-15)[2019-06-05]. https://arxiv.org/pdf/nucl-th/0010066.pdf.
11 KRIPPA B. Effective field theory at moderate nuclear density [EB/OL]. (2000-06-27)[2019-06-25]. https://arxiv.org/pdf/hep-ph/0006305.pdf.
12 YANG J F, HUANG J H. Physical Review C, Renormalization of NN scattering: Contact potential. 2005, 71 (3): 034001.
13 YANG J F. Journal of Physics A, A note on nonperturbative renormalization of effective field theory. 2009, 42 (34): 345402.
14 YANG J F. Annals of Physics, Nonperturbative NN scattering in 3S1–3D1 channels of EFT( $ \not \pi $ ) . 2013, 339, 160- 180.
15 YANG J F. Europhysics Letters, A nonperturbative parametrization and scenario for EFT renormalization. 2009, 85 (5): 51003.
16 YANG J F. Europhysics Letters, Effective range expansion in various scenarios of EFT( $ \not \pi $ ) . 2011, 94 (4): 41002.
17 PHILLIPS D R, BEANE S R, COHEN T D. Annals of Physics, Nonperturbative regularization and renormalization: Simple examples from nonrelativistic quantum mechanics. 1998, 263 (2): 255- 275.
18 LÜ J J, YANG J F. ‘Running’ with tight constraints in pionless EFT[EB/OL]. (2019-08-03)[2019-11-9]. https://arxiv.org/pdf/1806.03048.pdf.
19 STOKS V G J, KLOMP R A M, RENTMEESTER M C M, et al. Physical Review C, Partial-wave analysis of all nucleon-nucleon scattering data below 350 MeV. 1993, 48 (2): 792- 815.
20 ALM T, FRIMAN B L, R?PKE G, et al. Nuclear Physics A, Pairing instability in hot asymmetric nuclear matter. 1993, 551 (1): 45- 53.
21 THOULESS D J. Nuclear Physics, Stability conditions and nuclear rotations in the Hartree-Fock theory. 1960, 21, 225- 232.
文章导航

/