物理学与电子学

CdS晶体电子自旋相干动力学

  • 郭家兴 ,
  • 吴真 ,
  • 梁盼 ,
  • 姜美珍 ,
  • 胡蓉蓉 ,
  • 张圆圆 ,
  • 冯东海
展开
  • 1. 华东师范大学 精密光谱科学与技术国家重点实验室, 上海 200241
    2. 上海电机学院 文理学院, 上海 201306
    3. 上海应用技术大学 理学院, 上海 200235

收稿日期: 2020-03-14

  网络出版日期: 2021-01-28

基金资助

国家自然科学基金(91950112); 上海市自然科学基金(19ZR1414500)

Electron spin coherence dynamics in CdS crystals

  • Jiaxing GUO ,
  • Zhen WU ,
  • Pan LIANG ,
  • Meizhen JIANG ,
  • Rongrong HU ,
  • Yuanyuan ZHANG ,
  • Donghai FENG
Expand
  • 1. State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
    2. College of Arts and Sciences, Shanghai Dianji University, Shanghai 201306, China
    3. Colloge of Sciences, Shanghai Institute of Technology, Shanghai 200235, China

Received date: 2020-03-14

  Online published: 2021-01-28

摘要

利用时间分辨克尔旋转(Time-Resolved Kerr Rotation, TRKR)光谱技术研究了纤锌矿n-CdS(n型掺杂)(0001)面单晶在不同温度、不同波长下的电子自旋相干动力学. 发现低温下该材料存在两种电子自旋信号: 一种是在较长泵浦探测波长下存在的长寿命自旋信号, 低温5 K时其自旋退相位时间长达4.8 ns, 随着温度的升高不断减小; 另一种为较短泵浦探测波长下存在的短寿命自旋信号, 其自旋退相位时间约为40 ps, 可以持续到室温, 该自旋信号几乎不受温度的影响. 研究表明, 长寿命自旋信号来自于局域电子, 而短寿命自旋信号来自于导带自由电子.

本文引用格式

郭家兴 , 吴真 , 梁盼 , 姜美珍 , 胡蓉蓉 , 张圆圆 , 冯东海 . CdS晶体电子自旋相干动力学[J]. 华东师范大学学报(自然科学版), 2021 , 2021(1) : 92 -102 . DOI: 10.3969/j.issn.1000-5641.202022005

Abstract

In this paper, we use time-resolved Kerr rotation(TRKR) spectroscopy to study the electron spin coherence dynamics of a wurtzite (0001) plane n-CdS single crystal at different temperatures and wavelengths. Two types of electronic spin signals are observed in this material at low temperatures. One is a long-lived spin signal at relatively long pump probe wavelengths, where the spin dephasing time exceeds 4.8 ns at 5 K and decreases with increasing temperature. The other is a short-lived spin signal at relatively short pump probe wavelengths, where the spin dephasing time is about 40 ps and persists up to room temperature; in this case, the spin signal is largely independent of temperature. Studies have shown that long-lived spin signals can be attributed to localized electrons, while short-lived spin signals can be attributed to conduction delocalized electrons.

参考文献

1 OHNO Y, YOUNG D, BESCHOTEN B, et al. Nature, Electrical spin injection in a ferromagnetic semiconductor heterostructure. 1999, 402 (6763): 790- 792.
2 PRINZ G A. Physics Today, Spin-polarized transport. 1995, 48, 58- 63.
3 AWSCHALOM D D, BASSETT L C, DZURAK A S, et al. Science, Quantum spintronics: Engineering and manipulating atom-like spins in semiconductors. 2013, 339 (6124): 1174- 1179.
4 HOHAGE P, BACHER G, REUTER D, et al. Applied Physics Letters, Coherent spin oscillations in bulk GaAs at room temperature. 2006, 89 (23): 231101.
5 LAI T, LIU X, XU H, et al. Applied Physics Letters, Temperature dependence of electron-spin coherence in intrinsic bulk GaAs. 2006, 88 (19): 192106.
6 LAI T, TENG L, JIAO Z, et al. Applied Physics Letters, Evolution of spin coherence dynamics and g factor with electron excess energy in bulk intrinsic GaAs. 2007, 91 (6): 062110.
7 ZAWADZKI W, PFEFFER P, BRATSCHITSCH R, et al. Physical Review B, Temperature dependence of the electron spin g factor in GaAs. 2008, 78 (24): 245203.
8 TENG L H, CHEN K, WEN J H, et al. Journal of Physics D: Applied Physics, Density dependence of electron-spin polarization and relaxation in intrinsic GaAs at room temperature. 2009, 42 (13): 135111.
9 BESCHOTEN B, JOHNSTON-HALPERIN E, YOUNG D, et al. Physical Review B, Spin coherence and dephasing in GaN. 2001, 63 (12): 121202.
10 BU? J, SCHAEFER A, SCHUPP T, et al. Applied Physics Letters, High temperature electron spin dynamics in bulk cubic GaN: Nanosecond spin lifetimes far above room-temperature. 2014, 105 (18): 182404.
11 GHOSH S, SIH V, LAU W, et al. Applied Physics Letters, Room-temperature spin coherence in ZnO. 2005, 86 (23): 232507.
12 YANG Z, LI Y, LOOK D, et al. Journal of Applied Physics, Thermal annealing effect on spin coherence in ZnO single crystals. 2011, 110 (1): 016101.
13 SPRINZL D, HORODYSKá P, TESA?OVá N, et al. Physical Review B, Influence of n-type doping on electron spin dephasing in CdTe. 2010, 82 (15): 153201.
14 MA H, JIN Z, MA G, et al. Applied Physics Letters, Photon energy and carrier density dependence of spin dynamics in bulk CdTe crystal at room temperature. 2009, 94 (24): 241112.
15 ITO T, SHICHI W, OKAMI Y, et al. Physica Status Solidi C, Electron spin precession observed in bulk CdTe at room temperature. 2009, 6 (1): 319- 322.
16 KIMEL A, PAVLOV V, PISAREV R, et al. Physical Review B, Ultrafast dynamics of the photo-induced magneto-optical Kerr effect in CdTe at room temperature. 2000, 62 (16): R10610.
17 SHIN Y J, KIM S K, PARK B H, et al. Physical Review B, Photocurrent study on the splitting of the valence band for a CdS single-crystal platelet. 1991, 44 (11): 5522- 5526.
18 FENG D, LI X, JIA T, et al. Applied Physics Letters, Long-lived, room-temperature electron spin coherence in colloidal CdS quantum dots. 2012, 100 (12): 122406.
19 FENG D, SHAN L, JIA T, et al. Applied Physics Letters, Optical manipulation of electron spin coherence in colloidal CdS quantum dots. 2013, 102 (6): 062408.
20 LI X, FENG D, TONG H, et al. The Journal of Physical Chemistry Letters, Hole surface trapping dynamics directly monitored by electron spin manipulation in CdS nanocrystals. 2014, 5 (24): 4310- 4316.
21 FENG D, YAKOVLEV D R, PAVLOV V V, et al. Nano Letters, Dynamic evolution from negative to positive photocharging in colloidal CdS quantum dots. 2017, 17 (5): 2844- 2851.
22 TONG H, FENG D, LI X, et al. Materials, Room-temperature electron spin generation by femtosecond laser pulses in colloidal CdS quantum dots. 2013, 6 (10): 4523- 4531.
23 CHEN Z. Spectrally resolved optical study of transient spin dynamics in semiconductors[D]. Colorado: University of Colorado, 2006.
24 HUANG J, HOANG T B, MING T, et al. Physical Review B, Temporal and spatial valley dynamics in two-dimensional semiconductors probed via Kerr rotation. 2017, 95 (7): 075428.
25 Yugova I, Glazov M, Ivchenko E, et al. Physical Review B, Pump-probe Faraday rotation and ellipticity in an ensemble of singly charged quantum dots. 2009, 80 (10): 104436.
26 PUTIKKA W AND JOYNT R. Physical Review B, Theory of optical orientation in n-type semiconductors. 2004, 70 (11): 113201.
27 LEE J, VENUGOPAL A, SIH V. Applied Physics Letters, Anisotropic spin dephasing of impurity-bound electron spins in ZnO. 2015, 106 (1): 012403.
28 BU? J, RUDOLPH J, SCHUPP T, et al. Applied Physics Letters, Long room-temperature electron spin lifetimes in highly doped cubic GaN. 2010, 97 (6): 062101.
29 BU? J, SCHUPP T, AS D, et al. Physical Review B, Electron spin dynamics in cubic GaN. 2016, 94 (23): 235202.
30 LI H P, KAM C H, LAM Y L, et al. Optics Communications, Optical nonlinearities and photo-excited carrier lifetime in CdS at 532 nm. 2001, 190 (1/2/3/4/5/6): 351- 356.
31 WIESNER P AND HEIM U. Physical Review B, Dynamics of exciton-polariton recombination in CdS. 1975, 11 (8): 3071- 3077.
32 ?UTI? I, FABIAN J, SARMA S D. Reviews of Modern Physics, Spintronics: Fundamentals and applications. 2004, 76 (2): 323- 410.
文章导航

/