收稿日期: 2020-06-28
网络出版日期: 2021-04-01
基金资助
国家自然科学基金(31500355, 31600343); 上海市科技创新行动计划(18DZ1204602, 18DZ1204704); 上海市绿化和市容管理局项目(G182420)
Vessel characteristics and the density-size relationship of woody plantsat the Shanghai Chenshan Botanical Garden
Received date: 2020-06-28
Online published: 2021-04-01
以上海市辰山植物园85种常见木本植物为研究对象, 通过解剖木质部结构, 分析了枝条导管特征在不同生活型物种间的差异及其系统发育信号, 揭示了导管密度-大小权衡关系在不同生活型物种间的差异. 结果表明: ①常绿木本植物的导管直径((28.55 ± 8.84) μm)和导管占比(8.7% ± 2.89%)均显著小于落叶木本植物导管直径((35.81 ± 13.92) μm)和导管占比(12.7% ± 4.82%), 而导管密度在常绿((149.3 ± 75.62) N/mm2)和落叶((164.5 ± 154.28) N/mm2)木本植物之间则无显著差异; 乔木的导管直径((35.86 ± 13.5) μm)显著大于灌木((26.24 ± 8.84) μm), 导管占比和密度在乔木(12.09% ± 5.01%, (151.9 ± 142.73) N/mm2)和灌木(10.59% ± 2.99%, (208.7 ± 126.37) N/mm2)之间则无显著差异. ②导管直径、导管密度存在显著的系统发育信号, 且导管密度信号大于导管直径, 导管占比则无明显的谱系信号存在. ③标准化主轴估计分析表明, 导管密度-大小权衡关系普遍存在, 不同生活型植物具有相同的斜率系数(k = –0.89, 95%的置信区间CI 为 –0.98 ~ –0.79), 但常绿乔木的纵截距显著小于落叶乔木, 即相同导管密度下落叶乔木比常绿乔木具有更大的导管直径.
李媛媛 , 商侃侃 , 张希金 , 宋坤 . 上海辰山植物园木本植物幼枝导管特征及其权衡关系[J]. 华东师范大学学报(自然科学版), 2021 , 2021(2) : 142 -150 . DOI: 10.3969/j.issn.1000-5641.2021.02.014
In this study, we measured the branch xylem structure of 85 woody plant species at the Shanghai Chenshan Botanical Garden to compare vessel characteristics among different life forms and check their phylogenetic signals. The trade-off between vessel density and vessel size was subsequently compared among different life forms. The results showed that: ① The vessel diameter ((28.55 ± 8.84) μm) and vessel ratio (8.7% ± 2.89%) of evergreen woody plants were significantly smaller than the vessel diameter ((35.81 ± 13.92) μm) and vessel ratio (12.7% ± 4.82%) of deciduous woody plants; meanwhile, there was no significant difference observed in the vessel density between evergreen plants ((149.3 ± 75.62) N/mm2) and deciduous plants ((164.5 ± 154.28) N/mm2). The vessel diameter of trees ((35.86 ± 13.5) μm) was significantly larger than that of shrubs ((26.24 ± 8.84) μm), but there was no significant difference observed in the vessel ratio and vessel density between trees (12.09% ± 5.01%; (151.9 ± 142.73) N/mm2) and shrubs (10.59% ± 2.99%; (208.7 ± 126.37) N/mm2). ② There were significant phylogenetic signals observed in vessel diameter and vessel density, and the signal of vessel density was larger than that of vessel diameter. There was, however, no obvious phylogenetic signal in the vessel ratio. ③ The standardized major axis test indicated that the trade-off between vessel density and vessel size existed in all life forms, with a common slope coefficient of –0.89 and a 95% confidence interval (–0.98 ~ –0.79). However, the intercept of evergreen trees was significantly smaller than that of deciduous trees, suggesting that deciduous trees have a larger vessel diameter than evergreen trees for a given vessel density.
1 | GLEASON S M, WESTOBY M, JANSEN S, et al. Weak tradeoff between xylem safety and xylem-specific hydraulic efficiency across the world's woody plant species. New Phytologist, 2016, 209, 123- 136. |
2 | MANZONI S, VICO G, KATUL G, et al. Hydraulic limits on maximum plant transpiration and the emergence of the safety-efficiency trade-off. New Phytologist, 2013, 198, 169- 178. |
3 | HACKE U G, SPERRY J S, WHEELER J K, et al. Scaling of angiosperm xylem structure with safety and efficiency. Tree Physiology, 2006, 26 (6): 689- 701. |
4 | PFAUTSCH S, HARBUSCH M, WESOLOWSKI A, et al. Climate determines vascular traits in the ecologically diverse genus Eucalyptus . Ecology Letters, 2016, 19 (3): 240- 248. |
5 | DIXON H H. Transpiration and the Ascent of Sap [M]. London: Macmillan Publishers Limited, 1914. |
6 | RYAN M G, YODER B J. Hydraulic limits to tree height and tree growth–what keeps trees from growing beyond a certain height?. BioScience, 1997, 47 (4): 235- 242. |
7 | TYREE M T, COCHARD H, DAVIS S D. Biophysical perspectives of xylem evolution: Is there a tradeoff of hydraulic efficiency for vulnerability to dysfunction?. Iawa Journal, 1994, 15 (4): 335- 360. |
8 | SPERRY J S, MEINZER F C, MCCULLOH K A. Safety and efficiency conflicts in hydraulic architecture: scaling from tissues to trees. Plant Cell & Environment, 2008, 31 (5): 632- 645. |
9 | 徐茜, 陈亚宁. 胡杨茎木质部解剖结构与水力特性对干旱胁迫处理的响应. 中国生态农业学报, 2012, 20 (8): 1059- 1065. |
10 | 周朝彬, 辛慧慧, 宋于洋. 梭梭次生木质部解剖特征及其可塑性研究. 西北林学院学报, 2014, 29 (2): 207- 212. |
11 | 楚光明, 刘娜, 牛攀新, 等. 准噶尔盆地三种荒漠植物木质部导管解剖特征. 干旱区资源与环境, 2016, 30 (2): 104- 109. |
12 | LECHTHALER S, TYRNBULL T L, GELMINI Y, et al. A standardization method to disentangle environmental information from axial trends of xylem anatomical traits. Tree Physiology, 2018, 39 (3): 495- 502. |
13 | WESTOBY M, FALSTER D S, MOLES A T, et al. Plant ecological strategies: Some leading dimensions of variation between species. Annual Review of Ecology and Systematics, 2002, 33, 125- 159. |
14 | MURAMATSU N, YAMAMOTO M, NAKANO H, et al. Analysis of factors governing water flow traits in fruiting plants twigs. Scientia Horticulturae, 2011, 130 (1): 175- 180. |
15 | 曹科, 饶米德, 余建中, 等. 古田山木本植物功能性状的系统发育信号及其对群落结构的影响. 生物多样性, 2013, 21 (5): 564- 571. |
16 | 房帅, 原作强, 蔺菲, 等. 长白山阔叶红松林木本植物系统发育与功能性状结构. 科学通报, 2014, 59 (24): 2342- 2348. |
17 | 侯嫚嫚, 李晓宇, 王均伟, 等. 长白山针阔混交林不同演替阶段群落系统发育和功能性状结构. 生态学报, 2017, 37 (22): 7503- 7513. |
18 | 许格希, 林明献, 史作民, 等. 尖峰岭热带山地雨林林冠层乔木某些功能性状的系统发育信号、关联性及其演化模式. 生态学报, 2017, 37 (17): 5691- 5703. |
19 | LITTLE S A, KEMBEL S W, WILF P, et al. Paleotemperature proxies from leaf fossils reinterpreted in light of evolutionary history. Plos One, 2010, 5 (12): e15161. |
20 | THOMAS R, BOURA A. Palm stem anatomy: Phylogenetic or climatic signal?. Botanical Journal of the Linnean Society, 2015, 178 (3): 467- 488. |
21 | CABRERA HIM, ESTRADA-RUIZ E. Influence of phylogenetic relatedness on paleoclimate estimation using fossil wood: Vessel and fiber-related traits. Review of Palaeobotany & Palynology, 2018, 251, 73- 77. |
22 | 伍海兵, 方海兰, 彭红玲. 典型新建绿地上海辰山植物园土壤水库特征及其影响因子. 应用生态学报, 2016, 27 (5): 1437- 1444. |
23 | 伍海兵, 方海兰, 彭红玲, 等. 典型新建绿地上海辰山植物园的土壤物理性质分析. 水土保持学报, 2012, 26 (6): 85- 90. |
24 | 张希金, 宋坤, 蒲发光, 等. 安徽大别山木本植物幼树小枝薄壁组织组成特征初探. 植物生态学报, 2019, 43 (3): 238- 244. |
25 | PLAVCOVá L, HOCH G, MORRIS H, et al. The amount of parenchyma and living fibers affects storage of nonstructural carbohydrates in young stems and roots of temperate trees. American Journal of Botany, 2016, 103 (4): 603- 612. |
26 | WEBB C O, DONOGHUE M J. Phylomatic: Tree assembly for applied phylogenetics. Molecular Ecology Notes, 2005, 5 (1): 181- 183. |
27 | BLOMBERG S P, GARLAND T, IVES A R. Testing for phylogenetic signal in comparative data: Behavioral traits are more labile. Evolution, 2003, 57 (4): 717- 745. |
28 | WARTON D I, WEBER N C. Common slope tests for bivariate errors-in-variables models. Biometrical Journal, 2002, 44 (2): 161- 174. |
29 | WARTON D I, WRIGHT I J, FALSTER D S, et al. Bivariate line-fitting methods for allometry. Biological Reviews, 2006, 81 (2): 259- 291. |
30 | WEBB C O, ACKERLY D D, KEMBEL S W. Phylocom: Software for the analysis of phylogenetic community structure trait evolution. Bioinformatics, 2008, 24 (18): 2098- 2100. |
31 | PARADIS E, CLAUDE J, STRIMMER K. APE: Analyses of phylogenetics and evolution in R language. Bioinformatics, 2004, 20 (2): 289- 290. |
32 | TYREE M T, GRAHAM M E D, COOPER K E, et al. The hydraulic architecture of Thuja occidentalis . Canadian Journal of Botany, 1983, 61 (61): 2105- 2111. |
33 | TYREE M T, SNYDERMAN D A, WILMOT T R, et al. Water relations and hydraulic architecture of a tropical tree (Schefflera morototoni): Data, models, and a comparison with two temperate species (Acer saccharum and Thuja occidentalis) . Plant Physiology, 1991, 96 (4): 1105- 1113. |
34 | DRAKE P L, PRICE C A, POOT P, et al. Isometric partitioning of hydraulic conductance between leaves and stems: Balancing safety and efficiency in different growth forms and habitats. Plant, Cell & Environment, 2015, 38 (8): 1628- 1636. |
35 | 赵延涛. 浙江天童常绿阔叶林不同生长型木本植物的水分和温度代谢特征 [D]. 上海: 华东师范大学, 2016. |
36 | GAGLIARDI S, MARTIN A R, FILHO EDMV, et al. Intraspecific leaf economic trait variation partially explains coffee performance across agroforestry management regimes. Agriculture Ecosystems & Environment, 2015, 200, 151- 160. |
37 | WRIGHT I J, REICH P B, WESTOBY M, et al. The worldwide leaf economics spectrum. Nature, 2004, 428 (6985): 821- 827. |
38 | 苏田. 中国东部岛屿木本植物导管变异及其与叶片-木质性状耦合 [D]. 上海: 华东师范大学, 2019. |
39 | TYREE M T, ZIMMERMANN M H. Xylem structure and the ascent of sap. Science, 2002, 222 (4623): 500- 501. |
40 | DAVIS S D, SPERRY J S, HACKE U G. The relationship between xylem conduit diameter and cavitation caused by freezing. American Journal of Botany, 1999, 86 (10): 1367- 1372. |
/
〈 |
|
〉 |