河口海岸学

选择性提取碱土金属元素的方法对比及意义——以宁波平原表层沉积物为例

  • 黄晶 ,
  • 郑童童 ,
  • 王爱华 ,
  • 栗文静 ,
  • 王张华
展开
  • 1. 华东师范大学 河口海岸学国家重点实验室, 上海 200241
    2. 华东师范大学 城市发展研究院,上海 200062
    3. 中国地质调查局 南京地质调查中心, 南京 210016

收稿日期: 2020-03-26

  网络出版日期: 2021-04-01

基金资助

国家自然科学基金(41576042)

Comparison of different extraction methods for alkaline earth metals and its implications: A case study of the surficial sediments from Ningbo Plain

  • Jing HUANG ,
  • Tongtong ZHENG ,
  • Aihua WANG ,
  • Wenjing LI ,
  • Zhanghua WANG
Expand
  • 1. State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
    2. Institute of Urban Development, East China Normal University, Shanghai 200062, China
    3. Nanjing Center of China Geology Survey, Nanjing 210016, China

Received date: 2020-03-26

  Online published: 2021-04-01

摘要

在古环境研究中, Sr、Ba、Ca等碱土金属元素在沉积物中的含量及比值是一种较为常用的、识别海陆相环境的指标. 但元素多赋存于矿物晶格中, 而这些矿物基本上存在于酸提取后的残渣态中, 与沉积物沉积时的物理-生物-化学环境没有直接关系. 因此, 选择性提取沉积物中与沉积环境相关的碱土金属元素, 才能将该方法更好地应用于解释沉积环境. 本研究采集了宁波平原盐沼潮滩、河漫滩、感潮河道3种环境的表层沉积物, 采用等离子光谱仪测试了稀醋酸和稀盐酸提取液、酸提取后剩余残渣以及全量的Sr、Ba、Ca含量. 结果表明: 醋酸提取态对沉积环境变化最为敏感, 盐酸提取态次之, 全量Sr/Ba(摩尔比)无法区分3类表层沉积物的沉积环境; 用不同的样品量和仪器测量验证醋酸提取态的效果, 显示结果稳定. 此外, 宁波平原及邻近岛屿盐沼潮滩表层沉积物醋酸法提取的Ca和Sr浓度远高于河漫滩沉积物和山麓黄土, 感潮河道则介于两者之间, Ba的分布与Ca、Sr相反. 因此, 通过醋酸态碱土金属元素的端元分析, 可以有效地识别海岸带地层的海陆沉积环境演变.

本文引用格式

黄晶 , 郑童童 , 王爱华 , 栗文静 , 王张华 . 选择性提取碱土金属元素的方法对比及意义——以宁波平原表层沉积物为例[J]. 华东师范大学学报(自然科学版), 2021 , 2021(2) : 73 -84 . DOI: 10.3969/j.issn.1000-5641.2021.02.008

Abstract

The concentrations and relative ratios of alkaline earth metals, such as Sr, Ba, and Ca, in sediments are widely used to discriminate marine and terrestrial environments in paleoenvironmental research. However, geochemical elements occur mostly in mineral crystal lattices (namely, the residual phase after acid extraction), which is not linked to the physical, biological, or chemical environments of the deposition processes. Hence, only selective extraction of phases can be used to interpret changes in the sedimentary environment. In this study, we collected surficial sediments from the present-day saltmarsh-tidal flat, alluvial plain, and tidal river (Yaojiang River) in Ningbo Plain and used a plasma spectrometer to measure the concentrations of Sr, Ba, and Ca in: the leachates extracted by diluted acetic acid (HAc) and diluted hydrochloric acid (HCl), the residues after acid extraction, and the bulk samples. The results showed that alkaline earth metals in the HAc-leachates were most sensitive to changes in the sedimentary environment, followed by the HCl-leachates. No variation in Sr/Ba (molar ratio) could be distinguished in the bulk samples of surficial sediments collected from different sedimentary settings. Furthermore, consistent results were obtained by using different sample amounts and measuring instruments when applying the HAc method. Significant variations in alkaline earth metals in the HAc-leachates were observed for the surficial sediments in this study. Ca and Sr showed the highest concentrations in the saltmarsh-tidal flat sediments and the lowest concentrations in the alluvial sediments; Ba concentration showed the opposite trend. We thus suggest that end-member analyses of the alkaline earth metals in HAc leachates can be used to effectively identify transgression/regression recorded in sedimentary stratigraphy in the coastal zone.

参考文献

1 ENTWISTLE J A, ABRAHAMS P W, DODGSHON R A. Multi-element analysis of soils from scottish historical sites. Interpreting land-use history through the physical and geochemical analysis of soil. Journal of Archaeological Science, 1998, 25 (1): 1- 68.
2 MIDDLETON W D. Identifying chemical activity residues on prehistoric house floors: A methodology and rationale for multi-elemental characterization of a mild acid extract of anthropogenic sediments. Archaeometry, 2004, 46 (1): 47- 65.
3 WELLS E C. Investigating activity patterns in prehispanic plazas: Weak acid-extraction ICP-AES analysis of anthrosols at classic period el coyote, northwestern honduras. Archaeometry, 2004, 46 (1): 67- 84.
4 BOWEN H J M. Strontium and Barium in sea water and marine organisms. Journal of the Marine Biological Association of the United Kingdom, 1956, 35, 451- 460.
5 吴明清, 王贤觉. 东海沉积物的稀土和微量元素. 地球化学, 1991, (1): 40- 46.
6 COFFEY M, DEHAIRS F, COLLETTE O, et al. The behaviour of dissolved Barium in estuaries. Estuarine, Coastal and Shelf Science, 1997, 45, 113- 121.
7 CHO Y G, LEE C B, CHOI M S. Geochemistry of surface sediments off the southern and western coasts of Korea. Marine Geology, 1999, 159, 111- 129.
8 ZWOLSMAN J J G, VAN-ECK G T M. Geochemistry of major elements and trace metals in suspended matter of the Scheldt estuary, southwest Netherlands. Marine Chemistry, 1999, 66, 91- 111.
9 WANG Z, CHEN Z, LI L, et al. Temporal and spatial distribution of trace elements in China’s Yangtze subaqueous delta: A transit between land and sea. Chinese Science Bulletin, 2001, 46 (supp.): 65- 72.
10 DORVAL E, JONES C M, HANNIGAN R. Chemistry of surface waters: Distinguishing fine-scale differences in sea grass habitats of Chesapeake Bay. Limnology and Oceanography, 2005, 50, 1073- 1083.
11 MOHAN J A, WALTHER B D. Spatiotemporal variation of trace elements and stable isotopes in subtropical estuaries: II. Regional, local, and seasonal salinity-element relationships. Estuaries and Coasts, 2015, 38, 769- 781.
12 ALFONSO J A, MARTINEZ M, FLORES S, et al. Distribution of trace elements in offshore sediments of the Orinoco Delta. Journal of Coastal Research, 2006, 22, 502- 510.
13 王爱华. 不同形态锶钡比的沉积环境判别效果比较. 沉积学报, 1996, 14 (4): 168- 173.
14 史忠生, 陈开远, 史军, 等. 运用锶钡比判定沉积环境的可行性分析. 断块油气田, 2003, 10 (2): 12- 16.
15 王益友, 郭文莹, 张国栋. 几种地球化学标志在金湖凹陷阜宁群沉积环境中的应用. 同济大学学报(自然科学版), 1979, (2): 51- 60.
16 刘英俊, 曹励明, 李兆麟, 等. 元素地球化学 [M]. 北京: 科学出版社, 1984: 360-372.
17 钱利军, 陈洪德, 林良彪, 等. 四川盆地西缘地区中侏罗统沙溪庙组地球化学特征及其环境意义. 沉积学报, 2012, 30 (6): 1061- 1071.
18 蓝先洪, 马道修, 徐明广, 等. 珠江三角洲若干地球化学标志及指相意义. 海洋地质与第四纪地质, 1987, (1): 41- 51.
19 李明霖, 莫多闻, 毛龙江, 等. 浙江田螺山遗址古盐度及其环境背景同河姆渡文化演化的关系. 地理学报, 2010, 64 (3): 807- 816.
20 YANDOKA B M S, ABDULLAH W H, ABUBAKAR M B, et al. Geochemical characterisation of Early Cretaceous lacustrine sediments of Bima Formation, Yola Sub-basin, Northern Benue Trough, NE Nigeria: organic matter input, preservation, paleoenvironment and palaeoclimatic conditions. Marine and Petroleum Geology, 2015, 61, 82- 94.
21 WOODRUFF J D, DONNELLY J P, OKUSU A. Exploring typhoon variability over the mid-to-late Holocene: Evidence of extreme coastal flooding from Kamikoshiki, Japan. Quaternary Science Reviews, 2009, 28 (17/18): 1774- 1785.
22 YANG D Y, HAN M, KIM J C, et al. Shell and gravel layers caused by storm-induced rip currents during the Medieval Warm Period and Little Ice Age in South Korea. Palaeogeography Palaeoclimatology Palaeoecology, 2017, 487, 204- 215.
23 TIAN Y, FAN D, ZHANG X, et al. Event deposits of intense typhoons in the muddy wedge of the East China Sea over the past 150 years. Marine Geology, 2019, 410, 109- 121.
24 ZHOU L, GAO S, JIA J, et al. Extracting historic cyclone data from coastal dune deposits in eastern Hainan Island, China. Sedimentary Geology, 2019, 392, 105524.
25 TESSIER A P, CAMPBELL P G C, BISSON M X. Sequential extraction procedure for the speciation of trace metals. Analytical Chemistry, 1979, 51 (7): 844- 851.
26 VOUTSINOU-TALIADOUR F. A weak acid extraction method as a tool for the metal pollution assessment in surface sediments. Microchimica Acta, 1995, 119 (3/4): 243- 249.
27 DAVIDSON C M, THOMAS R P, MCVEY S E, et al. Evaluation of a sequential extraction procedure for the speciation of heavy metals in sediments. Analytica Chimica Acta, 1994, 291, 277- 286.
28 YANG S, DING Z, GU Z. Acetic acid-leachable elements in pedogenic carbonate nodules and links to the East-Asian summer monsoon. Catena, 2014, 117, 73- 80.
29 LYLE M, HEATH G R, ROBBINS J M. Transport and release of transition elements during early diagenesis: Sequential leaching of sediments from MANOP Sites M and H. Part I. pH 5 acetic acid leach. Geochimica et Cosmochimica Acta, 1984, 48 (9): 1705- 1715.
30 GE L, JIANG S Y, SWENNEN R, et al. Chemical environment of cold seep carbonate formation on the northern continental slope of South China Sea: Evidence from trace and rare earth element geochemistry. Marine Geology, 2010, 277 (1): 21- 30.
31 王爱华, 刘建坤, 许乃岑, 等. 陆源碎屑沉积物中沉积成因锶钡的选择性提取新技术. 中国地质, 2019, 46 (3): 670- 671.
32 王爱华, 刘建坤, 李华玲, 等. 陆源碎屑沉积物中沉积成因锶钡的选择性提取方法: 中国, ZL 201611260917.0 [P]. 2019-03-05.
33 宁波市水利志编纂委员会. 宁波市水利志 [M]. 北京: 中华书局, 2006: 60-64.
34 茅泽育, 赵雪峰, 江春波. 感潮河段盐水入侵的河口水质模型. 水利学报, 2009, 40 (5): 520- 528.
35 栗文静. 浙江宁波大榭岛榭北盆地全新世环境演变及史前制盐环境适宜性探讨 [D]. 上海: 华东师范大学, 2019.
36 王文森. 变异系数——一个衡量离散程度简单而有用的统计指标. 中国统计, 2007, (6): 41- 42.
37 张朝生, 章申, 王立军, 等. 长江与黄河沉积物金属元素地球化学特征及其比较. 地理学报, 1998, (4): 314- 322.
38 陈琳莹, 李崇瑛, 陈多福. 泥灰炭中自生方解石的稀土元素酸溶方法研究. 地球化学, 2014, 43 (6): 647- 654.
39 周婷. 碳酸盐岩稀土元素的酸溶分馏研究 [D]. 成都: 成都理工大学, 2018.
40 NOVáK I, ?I?EL B. Dissolution of smectites in hydrochloric acid: Ⅱ. Dissolution rate as a function of crystallochemical composition. Clays and Clay Minerals, 1978, 26 (5): 341- 344.
41 GONNEEA M E, PAYTAN A. Phase associations of barium in marine sediments. Marine Chemistry, 2006, 100 (1/2): 124- 135.
42 王爱华, 叶思源, 刘建坤, 等. 不同选择性提取方法锶钡比的海陆相沉积环境判别探讨——以现代黄河三角洲为例. 沉积学报, 2020, (6): 1226- 1238.
43 张朝生, 王立军, 章申. 长江中下游河流沉积物和悬浮物中金属元素的形态特征. 中国环境科学, 1995, 15 (5): 342- 347.
44 宫少军, 秦志亮, 叶思源, 等. 黄河三角洲ZK5钻孔沉积物地球化学特征及其沉积环境. 沉积学报, 2014, 32 (5): 855- 862.
45 WATABE N. Crystal growth of calcium carbonate in biological systems. Journal of Crystal Growth, 1974, 24/25, 116- 122.
46 NEHRKE G, POIGNER H, WILHELMS-DICK D, et al. Coexistence of three calcium carbonate polymorphs in the shell of the Antarctic clam Laternula elliptica . Geochemistry Geophysics Geosystems, 2013, 13 (5): 1- 8.
47 THORPE C L, LLOYD J R, LAW G T W, et al. Strontium sorption and precipitation behaviour during bioreduction in nitrate impacted sediments. Chemical Geology, 2012, 306, 114- 122.
文章导航

/