收稿日期: 2020-03-17
网络出版日期: 2021-05-26
基金资助
国家自然科学基金(11975099, 11575041)
The impact of coupling patterns on transport in multilayer networks
Received date: 2020-03-17
Online published: 2021-05-26
多层网络能更好地反映真实世界中许多系统的结构和特征, 近年来已逐渐成为人们的研究热点. 基于层间节点的度-度相关性, 提出了一种层间中间度耦合方式, 目的是在较低的层间耦合成本下提高网络传输容量. 在最短路径和有效路由这两种经典的路由策略下, 分别验证了中间度耦合方式的有效性. 与同配耦合、异配耦合和随机耦合这3种耦合方式相比, 中间度耦合方式可以使网络中流量的分布更加均匀、网络传输容量的提升更大, 并可有效降低数据包在网络中的平均传输时间. 数据包采用有效路由策略传输时, 在较低的耦合概率下, 中间度耦合方式更能明显地提高网络的传输容量; 同时, 仿真发现均匀的网络拓扑结构具备更高的承载能力.
胡亚琴 , 唐明 . 层间耦合关联对多层网络交通传输的影响[J]. 华东师范大学学报(自然科学版), 2021 , 2021(3) : 105 -113 . DOI: 10.3969/j.issn.1000-5641.2021.03.011
Multilayer networks can better reflect the structure and characteristics of many systems in the real world. In recent years, multilayer networks have become a focus area for many researchers. Based on the degree-degree correlation of interlayer nodes, we propose an intermediate degree coupling pattern to enhance the traffic capacity of multilayer networks at a low relative cost. In addition, the effectiveness of the intermediate degree coupling pattern is verified using two classic routing strategies, namely shortest path and efficient routing. Compared with the three coupling methods-assortative coupling, disassortative coupling, and random coupling-the intermediate coupling pattern makes the traffic load distribution more uniform on multilayer networks; hence, the traffic capacity of multilayer networks is greatly improved, and the average transport time of packets is effectively reduced. With lower coupling probability, the intermediate coupling pattern can significantly enhance the traffic capacity of a multilayer network when an efficient routing strategy is used. Meanwhile, simulation results show that more uniform network topology results in higher traffic capacity.
1 | ZHANG Z Q, PU P, HAN D D, et al. Self-adaptive Louvain algorithm: Fast and stable community detection algorithm based on the principle of small probability event. Physica A, 2018, 506, 975- 986. |
2 | VAZIFEH M M, SANTI P, RESTA G, et al. Addressing the minimum fleet problem in on-demand urban mobility. Nature, 2018, 557, 534-538. |
3 | YANG H X, WANG W X, LAI Y C, et al. Control of epidemic spreading on complex networks by local traffic dynamics. Physical Review E, 2011, 84 (4): 045101. |
4 | LING X, HU M B, JIANG R, et al. Global dynamic routing for scale-free networks. Physical Review E, 2010, 81 (1 Pt 2): 016113. |
5 | JIANG Z Y, MA J F, JING X. Enhancing traffic capacity of scale-free networks by employing hybrid routing strategy. Physica A, 2015, 422, 181- 186. |
6 | PERRA N, GON?ALVES B, PASTOR-SATORRAS R, et al. Activity driven modeling of time varying networks. Scientific Reports, 2012, (2): 469. |
7 | MORRIS R G, BARTHELEMY M. Transport on coupled spatial networks. Physical Review Letters, 2012, 109 (12): 128703. |
8 | SOLé-RIBALTA A, GóMEZ S, ARENAS A. Congestion induced by the structure of multiplex networks. Physical Review Letters, 2016, 116 (10): 108701. |
9 | ALETA A, MELONI S, MORENO Y. A multilayer perspective for the analysis of urban transportation systems. Scientific Reports, 2017, (7): 44359. |
10 | GUO Q T, COZZO E, ZHENG Z M, et al. Lévy random walks on multiplex networks. Scientific Reports, 2016, (6): 376411. |
11 | MA J L, HAN W Z, GUO Q, et al. Improved efficient routing strategy on two-layer complex networks. International Journal of Modern Physics C, 2016, 27 (4): 1650044. |
12 | MANFREDI S, DI TUCCI E, LATORA V. Mobility and congestion in dynamical multilayer networks with finite storage capacity. Physical Review Letters, 2018, 120 (6): 068301. |
13 | WU J J, ZHONG J, CHEN Z H, et al. Optimal coupling patterns in interconnected communication networks. IEEE Transactions on Circuits and Systems Ⅱ: Express Briefs, 2018, 65 (8): 1109- 1113. |
14 | CHEN J, WU C Y, LI M, et al. Hybrid traffic dynamics on coupled networks. Physica A, 2019, 516, 98- 104. |
15 | YAN G, ZHOU T, HU B, et al. Efficient routing on complex networks. Physical Review E, 2006, 73 (4 Pt 2): 046108. |
16 | ERD?S P, RéNYI A. On the evolution of random graphs. Magyar Tud Akad Mat Kutató Int K?zl, 1960, (5): 17- 61. |
/
〈 |
|
〉 |