收稿日期: 2020-11-16
网络出版日期: 2021-07-23
基金资助
国家科技重大专项(2017ZX07207001, 2018ZX07208008)
Immobilization and efficacy of an aerobic denitrifier
Received date: 2020-11-16
Online published: 2021-07-23
为了提高好氧反硝化菌的环境耐受性和脱氮效率, 采用聚乙烯醇(PVA)、海藻酸钠(SA)和稻壳粉作为载体对好氧反硝化菌进行固定化, 并对固定化颗粒的性能进行评价. 结果如下: 固定化颗粒最佳配比为12%聚乙烯醇(PVA)、8%海藻酸钠(SA)、0.5 g稻壳粉和10 mL菌液; 固定化颗粒具有较好的稳定性和传质性, 48 h的总氮(TN)去除率为89.35% ~ 90.12%. 固定化颗粒对pH值和转速具有良好的耐受性, pH值为11时, TN去除率为90%; 120 r/min时TN和NH4+-N去除率最高, 分别为91.29%和93.30%; 固定化颗粒不耐低温(10℃和15℃), 在10℃时, TN去除率仅为20%左右; 但是在30℃时, TN去除率可达90.59%.
尹超 , 李莹 , 张婷月 , 刘佳敏 , 陈体达 , 崔丹 , 黄民生 . 好氧反硝化菌的固定化及其效能研究[J]. 华东师范大学学报(自然科学版), 2021 , 2021(4) : 1 -7 . DOI: 10.3969/j.issn.1000-5641.2021.04.001
To improve the environmental tolerance and nitrogen removal efficiency of an aerobic denitrifier, polyvinyl alcohol (PVA), sodium alginate (SA), and rice hull powder were used as immobilized carriers for an aerobic denitrifier and the performance was subsequently evaluated. The results showed that the optimal ratio of immobilized particles was a mixture of 12% PVA, 8% sodium alginate (SA), 0.5 g rice hull powder, and 10 mL bacterial solution. The immobilized particles had strong stability and mass transfer capability; the removal efficiency of TN was 89.35% ~ 90.12% over 48h. The immobilized particles had good tolerance to pH and rotating speed. When the pH was 11, the removal efficiency of TN was 90%. The removal efficiency of TN and NH4+-N was the highest (91.29% and 93.30%, respectively) when the speed was 120 r/min. The immobilized particles were not resistant to low temperatures (10℃ and 15℃), and the TN removal efficiency was only about 20% at 10℃. The TN removal efficiency, however, achieved 90.59% at 30℃.
Key words: aerobic denitrifer; immobilization; denitrification
1 | 陈静雯. 短程硝化反硝化生物滤池脱氮效果研究 [D]. 哈尔滨: 哈尔滨工业大学, 2017. |
2 | DUAN J, FANG H, SU B, et al. Characterization of a halophilic heterotrophic nitrification-aerobic denitrification bacterium and its application on treatment of saline wastewater. Bioresoure Technology, 2015, 179, 421- 428. |
3 | CAPODICI M, CORSINO S F, TORREGROSSA M, et al. Shortcut nitrification-denitrification by means of autochthonous halophilic biomass in an SBR treating fish-canning wastewater. Journal of Environmental Management, 2018, 208, 142- 148. |
4 | HE Q, PENG X, LI Z. The treatment of animal manure wastewater by coupled simultaneous methanogenesis and denitrification (SMD) and shortcut nitrification–denitrification (SND). Journal of Chemical Technology & Biotechnology, 2015, 89 (11): 1697- 1704. |
5 | 黄廷林, 张丽娜, 张海涵. 一株贫营养异养硝化-好氧反硝化菌的筛选及脱氮特性. 生态环境学报, 2015, 24 (1): 113- 120. |
6 | 丁炜, 朱亮, 徐京, 等. 好氧反硝化菌及其在生物处理与修复中的应用研究进展. 应用与环境生物学报, 2011, 17 (6): 923- 929. |
7 | 郝婧. 包埋固定化脱氮菌群用于处理高氨氮废水的研究 [D]. 北京: 清华大学, 2014. |
8 | 张泽钰, 李茹莹. 固定化微生物对河水的脱氮效果研究. 环境科学学报, 2020, 40 (1): 161- 165. |
9 | YAN J, JETTEN M, RANG J L, et al. Comparison of the effects of different salts on aerobic ammonia oxidizers for treating ammonium-rich organic wastewater by free and sodium alginate immobilized biomass system. Chemosphere, 2010, 81 (5): 669- 673. |
10 | SU J F, CHENG C, MA F. Comparison of the NH4+-N removal ability by Klebsiella sp. FC61 in a bacterial suspension system and a bacterial immobilization system . Separation and Purification Technology, 2017, 172, 463- 472. |
11 | XU X Y, JIN Z X, WANG B, et al. Treatment of high-strength ammonium wastewater by polyvinyl alcohol sodium alginate immobilization of activated sludge. Process Biochemistry, 2017, 63, 214- 220. |
12 | ZHOU G Z, WANG Z F, LI W Q, et al. Graphene-oxide modified polyvinyl-alcohol as microbial carrier to improve high salt wastewater treatment. Materials Letters, 2015, 156, 205- 208. |
13 | 张婷月, 丁钰, 黄民生. 异养硝化-好氧反硝化细菌的筛选及其脱氮性能研究. 华东师范大学学报(自然科学版), 2018, (6): 22- 31. |
14 | 张霓. 异养硝化-好养反硝化细菌Pseudomonas putida ZN1的脱氮及耐重金属特性研究 [D]. 太原: 太原理工大学, 2019. |
15 | HUANG H K, TSENG S K. Nitrate reduction by Citrobacter diversus under aerobic environment . Applied Microbiology & Biotechnology, 2001, 55 (1): 90- 94. |
16 | KUMAR M, LIN J G. Co-existence of anammox and denitrification for simultaneous nitrogen and carbon removal-Strategies and issues. Journal of Hazardous Materials, 2010, 178 (1): 1- 9. |
17 | LEI Y, REN Y X, LIANG X, et al. Nitrogen removal characteristics of a heterotrophic nitrifier Acinetobacter junii YB and its potential application for the treatment of high-strength nitrogenous wastewater . Bioresource Technology, 2015, 193, 227- 233. |
18 | XIE S G, ZHANG X J, WANG Z S. Temperature effect on aerobic denitrification and nitrification. Journal of Environmental Sciences, 2003, 15 (5): 669- 673. |
19 | CHEN M, WANG W, FENG Y, et al. Impact resistance of different factors on ammonia removal by heterotrophic nitrification-aerobic denitrification bacterium Aeromonas sp HN-02 . Bioresource Technology, 2014, 167, 456- 461. |
20 | 颜薇芝, 张汉强, 余从田, 等. 一株异养硝化好氧反硝化不动杆菌的分离及脱氮性能. 环境工程学报, 2017, 11 (7): 4419- 4428. |
21 | ZHAO B, HE Y L, HUANG J, et al. Heterotrophic nitrogen removal by Providencia rettgeri strain YL . Journal of Industrial Microbiology & Biotechnology, 2010, 37 (6): 609- 616. |
22 | HE T X, LI Z L, SUN Q, et al. Heterotrophic nitrification and aerobic denitrification by Pseudomonas tolaasii Y-11 without nitrite accumulation during nitrogen conversion . Bioresource Technology, 2016, 200, 493- 499. |
/
〈 |
|
〉 |