水体污染控制与治理

LID指数模型构建框架及图解应用探讨

  • 钱美尹 ,
  • 杨凯 ,
  • 谢胜 ,
  • 丁磊 ,
  • 徐露 ,
  • 陈莹
展开
  • 1. 华东师范大学 生态与环境科学学院 上海城市化生态过程和生态恢复重点实验室, 上海 200241
    2. 上海污染控制与生态安全研究院, 上海 200092
    3. 上海市政工程设计研究总院(集团)有限公司, 上海 200092

收稿日期: 2020-11-16

  网络出版日期: 2021-07-23

基金资助

高新园区工业废水近零排放政策、模式、机制研究与应用示范(2019YFC0408205); 上海化学工业区管理委员会支持项目

Discussion on LID index model construction framework and its graphical application

  • Meiyin QIAN ,
  • Kai YANG ,
  • Sheng XIE ,
  • Lei DING ,
  • Lu XU ,
  • Ying CHEN
Expand
  • 1. Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
    2. Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
    3. Shanghai Municipal Engineering Design Institute (Group)Co. Ltd., Shanghai 200092, China

Received date: 2020-11-16

  Online published: 2021-07-23

摘要

在分析不同低影响开发技术(Low Impact Development, LID)措施的径流削减效果的基础上, 提出了基于LID径流削减效率的LID指数的模型, 进而设计了LID设施选择图, 以根据建成区径流污染削减目标而快速选择适宜的LID设施类型及不同LID设施类型的比例. 结果表明, 随着LID指数增加, 雨水径流量及雨水径流污染物呈类似指数形式降低, 且LID指数越大, LID径流削减率越大, 但是径流削减的边际效应逐渐降低; 该模型灵活性较高, 具有探索应用意义.

关键词: LID; 径流污染; 海绵城市

本文引用格式

钱美尹 , 杨凯 , 谢胜 , 丁磊 , 徐露 , 陈莹 . LID指数模型构建框架及图解应用探讨[J]. 华东师范大学学报(自然科学版), 2021 , 2021(4) : 17 -25 . DOI: 10.3969/j.issn.1000-5641.2021.04.003

Abstract

In this paper, we propose the concept of “LID (low impact development) Index” and “LID Runoff Reduction Efficiency” based on an analysis of runoff cutting efficiency for different LID technical measures. A map was designed to help quickly select the appropriate LID facility and its proportions according to the pollution reduction target in a built-up area. It shows that when the‘LID index’ increases, surface runoff and pollutants exhibit a similar exponential function form; the larger the LID index, the lower the “LID runoff reduction efficiency”. The model data is easy to obtain and flexible, rendering potential applications worthy of exploration.

参考文献

1 张智. 城镇雨水防洪与雨水利用 [M]. 2版. 北京: 中国建筑工业出版社, 2016.
2 WANG J L, ZHANG P P, YANG L Q, et al. Cadmium removal from urban stormwater runoff via bioretention technology and effluent risk assessment for discharge to surface water. Journal of Contaminant Hydrology, 2016, 185, 42- 50.
3 PISTOCCHI A. A preliminary pan-European assessment of pollution loads from urban runoff. Environmental Rresearch, 2020, 182, 109- 129.
4 吴民山, 李思敏, 张文强, 等. 天津滨海临港工业园区径流污染特征及其控制策略. 环境工程学报, 2020, 14 (12): 3435- 3446.
5 住房和城乡建设部. 海绵城市建设技术指南 [EB/OL]. (2014-10-22)[2020-05-08]. https://wenku.baidu.com/view/472-222aecd2e3f5727a5e96293.html.
6 陈前虎, 邹澄昊, 黄初冬, 等. 基于多目标粒子群算法的LID设施优化布局研究. 中国给水排水, 2019, 35 (19): 126- 132.
7 章双双, 潘杨, 李一平, 等. 基于SWMM模型的城市化区域LID设施优化配置方案研究. 水利水电技术, 2018, 49 (6): 10- 15.
8 张小富. 兼顾功能、环境和效益的LID设施配置优化方法研究. 水资源开发与管理, 2020, (6): 24- 28.
9 WALSH C J, FLETCHER T D, BURNS M J. Urban storm water runoff: A new class of environmental flow problem. Plos One, 2012, 7 (9): 1- 10.
10 ASKARIZADEH A, RIPPY M A, FLETCHER T D, et al. From rain tanks to catchments: Use of low-impact development to address hydrologic symptoms of the urban stream syndrome. Environmental Science & Technology, 2015, 49 (19): 11264- 11280.
11 黄锡荃. 水文学[M]. 北京: 高等教育出版社, 2015.
12 赵飞, 张书函, 陈建刚, 等. 透水铺装雨水入渗收集与径流削减技术研究. 给水排水, 2011, 47 (S1): 254- 258.
13 李芃抒, 王文海, 李俊奇, 等. 道路生物滞留带径流削减效果的试验研究. 水利水电技术, 2018, 49 (12): 1- 10.
14 张辰. 植草沟对雨水径流量及径流污染控制研究 [D]. 武汉: 华中科技大学, 2019.
文章导航

/