收稿日期: 2020-05-12
网络出版日期: 2021-07-23
基金资助
国家重点研发计划(2020YFF0305905); 国家自然科学基金(41801034); 河北省科学院院管项目(20103)
The impacts of climate and land use changes on water yield in the Beisan River Basin
Received date: 2020-05-12
Online published: 2021-07-23
北三河流域是京津冀地区的重要水源地, 恰当分析流域水源供给时空变化及驱动因素对维持生态系统安全与稳定意义重大. 基于气象、土地利用及土壤等数据, 利用InVEST模型的产水模块分析了北三河流域2000—2017年水源供给量的时空变化特征, 通过情景模拟探讨了气候与土地利用变化对流域水源供给能力变化的贡献程度. 结果表明, 2000—2017年, 北三河流域年均水源供给量为17.8 × 108 m3, 其年际变化呈增加趋势, 增长率为1.03 × 108 m3/a. 水源供给量在空间上呈南高北低的分布格局, 南北部的平均产水深度分别为70.85 mm和8.83 mm, 水源供给高值区由东南泃河和还乡河流域向西南温河与永定北河流域转移. 从不同的土地利用类型来看, 单位面积水源供给能力由高到低为: 建设用地 > 耕地 > 水域 > 未利用地 > 林地 > 草地. 2000—2015年, 耕地的水源供给量最高, 占流域水源供给总量的51.3%, 而建设用地水源供给量增长幅度最大, 达到144.3%. 情景模拟结果表明, 气候和土地利用变化对水源供给量增加的贡献率分别为70.7%和29.3%, 降水量的激增起到主导作用.
李文静 , 王盛 , 李庆 , 武桃丽 , 赵欣悦 . 气候和土地利用变化对北三河流域生态系统水源供给服务功能的影响[J]. 华东师范大学学报(自然科学版), 2021 , 2021(4) : 99 -108 . DOI: 10.3969/j.issn.1000-5641.2021.04.012
The Beisan River Basin is an important water source for the Jing-Jin-Ji region. It is important to analyze the temporal and spatial changes in basin water yield and the corresponding driving factors to maintain the security and stability of the ecosystem. Based on meteorology, land use, and soil data, the water production module of the InVEST model was used to analyze the temporal and spatial change characteristics of water yield in the Beisan River Basin from 2000 to 2017. The contribution of climate and land use change to the change in water yield was explored through scenario simulation. The results showed that from 2000 to 2017, the average annual water yield of the Beisan River Basin was 17.8 × 108 m3; the annual change showed an increasing trend at a rate of 1.03 × 108 m3/a. The spatial distribution pattern of water yield was high in the south and low in the north. The average depth of water production in the south and north was 70.85 mm and 8.83 mm, respectively. The high value area of water yield was transferred from the southeast Juhe River and Huanxiang River Basin to the southwest Wenhe River and Yongdingbei River Basin. The water supply per unit area, ranked from high to low, across different land use types showed the following order: construction land > cultivated land > water area > unused land > forest land > grassland. From 2000 to 2015, the water yield of cultivated land was the highest, accounting for 51.3% of the total water yield of the basin, while that of construction land increased the most, reaching 144.3%. Scenario simulation results showed that climate and land use change contributed 70.7% and 29.3%, respectively, to the water yield increase, and the surge in precipitation played a leading role.
Key words: water yield; InVEST model; ecosystem services; the Beisan River Basin
1 | 钱正英. 中国水资源战略研究中几个问题的认识. 河海大学学报, 2001, 29 (5): 1- 7. |
2 | COSTANZA R, D'ARGE R, GROOT R, et al. The value of the world's ecosystem services and natural capital. Nature, 1997, 387 (6630): 253- 260. |
3 | 孟雅丽, 苏志珠, 马杰, 等. 基于生态系统服务价值的汾河流域生态补偿研究. 干旱区资源与环境, 2017, 31 (8): 76- 81. |
4 | 李想, 雷硕, 冯骥, 等. 北京市绿地生态系统文化服务功能价值评估. 干旱区资源与环境, 2019, 33 (6): 33- 39. |
5 | MESSERLI B, GROSJEAN M, HOFER T. From nature-dominated to human-dominated environmental changes. Quaternary Science Reviews, 2000, 19, 459- 479. |
6 | 王浩, 王建华, 秦大庸, 等. 基于二元水循环模式的水资源评价理论方法. 水利学报, 2006, 37 (12): 1496- 1501. |
7 | 窦攀烽, 左舒翟, 任引, 等. 气候和土地利用/覆被变化对宁波地区生态系统产水服务的影响. 环境科学学报, 2019, 39 (7): 2398- 2409. |
8 | 李屹峰, 罗跃初, 刘纲, 等. 土地利用变化对生态系统服务功能的影响——以密云水库流域为例. 生态学报, 2013, 33 (3): 726- 736. |
9 | 吴迎霞. 海河流域生态服务功能空间格局及其驱动机制 [D]. 武汉: 武汉理工大学, 2013. |
10 | 许丁雪, 吴芳, 何立环, 等. 土地利用变化对生态系统服务的影响——以张家口-承德地区为例. 生态学报, 2019, 39 (20): 7493- 7501. |
11 | 吴瑞, 刘桂环, 文一惠. 基于InVEST模型的官厅水库流域产水和水质净化服务时空变化. 环境科学研究, 2017, 30 (3): 406- 414. |
12 | 王大尚, 李屹峰, 郑华, 等. 密云水库上游流域生态系统服务功能空间特征及其与居民福祉的关系. 生态学报, 2014, 34 (1): 70- 81. |
13 | 庞靖鹏, 刘昌明, 徐宗学. 密云水库流域土地利用变化对产流和产沙的影响. 北京师范大学学报(自然科学版), 2010, 46 (3): 290- 299. |
14 | 程扬, 张雪花, 冯婧. 北三河水系水资源调度研究综述. 环境工程, 2016, 34 (S1): 378- 380. |
15 | TALLIS H T, RICKETTS T, GUERRY A D, et al. InVEST 2.2. 4 users guide [R]. Stanford: The Natural Capital Project, 2011. |
16 | ZHANG L, DAWES W R, WALKER G R. Response of mean annual evapotranspiration to vegetation changes at catchment scale. Water Resource Research, 2001, 37 (3): 701- 708. |
17 | BUDYKO M I. Climate and Life [M]. New York: Academic Press, 1974. |
18 | 周文佐, 刘高焕, 潘剑君. 土壤有效含水量的经验估算研究——以东北黑土为例. 干旱区资源与环境, 2003, 17 (4): 88- 95. |
19 | 李夫星. 基于USLE模型的河北省土壤侵蚀评价研究 [D]. 石家庄: 河北师范大学, 2012. |
20 | ARUNYAWAT S, SHRESTHA R P. Assessing land use change and its impact on ecosystem services in northern Thailand. Sustainability, 2016, 8 (8): 768. |
21 | JUJNOVSKY J, RAMOS A, CARO-BORRERO A, et al. Water assessment in a peri-urban watershed in Mexico City: A focus on an ecosystem services approach. Ecosystem Services, 2017, 24, 91- 100. |
22 | LI S, YANG H, LACAYO M, et al. Impacts of land-use and land-cover changes on water yield: A case study in Jing-Jin-Ji, China. Sustainability, 2018, 10 (4): 960. |
23 | XU J, LIU S, ZHAO S, et al. Spatiotemporal dynamics of water yield service and its response to urbanisation in the Beiyun River Basin, Beijing. Sustainability, 2019, 11 (16): 4361. |
24 | 孙见伟. 基于InVEST模型的都昌县土地利用/覆被变化产水效应研究 [D]. 南昌: 江西农业大学, 2018. |
/
〈 |
|
〉 |