数据分析与应用

基于t-LeNet与时间序列分类的窃电行为检测

  • 马晓琴 ,
  • 薛晓慧 ,
  • 罗红郊 ,
  • 刘通宇 ,
  • 袁培森
展开
  • 1. 国网青海省电力公司 信息通信公司, 西宁 810008
    2. 南京农业大学 人工智能学院, 南京 210095
马晓琴, 女, 高级工程师, 研究方向为用电信息系统检修维护. E-mail: xqm8651@126.com

收稿日期: 2021-08-07

  网络出版日期: 2021-09-28

Electricity theft detection based on t-LeNet and time series classification

  • Xiaoqin MA ,
  • Xiaohui XUE ,
  • Hongjiao LUO ,
  • Tongyu LIU ,
  • Peisen YUAN
Expand
  • 1. Information and Communication Company, State Grid Qinghai Province Electric Power Company, Xining 810008 China
    2. College of Artificial Intelligence, Nanjing Agricultural University, Nanjing 210095, China

Received date: 2021-08-07

  Online published: 2021-09-28

摘要

窃电行为是导致电力企业电能与经济效益损失的重要原因. 提出了一种基于t-LeNet(Time-Series Specific Version of LeNet Model)与时间序列分类(Time Series Classification, TSC)的窃电行为检测方法: 首先, 获取用户用电量时序数据, 使用降采样方法生成训练集; 然后, 使用t-LeNet神经网络训练并预测得到分类结果, 判断用户是否存在窃电行为. 使用国家电网真实用户的用电量数据集进行了实验验证. 实验结果表明, 所提方法相较于基于Time-CNN(Time Convolutional Neural Network)、MLP(Muti-Layer Perception)的时间序列分类方法, 在综合评价指标、精确率、召回率指标上均有不同程度提高, 其对窃电行为的检测具有可行性与有效性.

本文引用格式

马晓琴 , 薛晓慧 , 罗红郊 , 刘通宇 , 袁培森 . 基于t-LeNet与时间序列分类的窃电行为检测[J]. 华东师范大学学报(自然科学版), 2021 , 2021(5) : 104 -114 . DOI: 10.3969/j.issn.1000-5641.2021.05.010

Abstract

Electricity theft results in significant losses in both electric energy and economic benefits for electric power enterprises. This paper proposes a method to detect electricity theft based on t-LeNet and time series classification. First, a user’s power consumption time series data is obtained, and down-sampling is used to generate a training set. A t-LeNet neural network can then be used to train and predict classification results for determining whether the user exhibits behavior reflective of electricity theft. Lastly, real user power consumption data from the state grid can be used to conduct experiments. The results show that compared with the time series classification method based on Time-CNN (Time Convolutional Neural Network) and MLP (Muti-Layer Perception), the proposed method offers improvements in the comprehensive evaluation index, accuracy rate, and recall rate index. Hence, the proposed method can successfully detect electricity theft.

参考文献

1 谢治春, 赵兴庐, 刘媛. 金融科技发展与商业银行的数字化战略转型. 中国软科学, 2018, 184- 192.
2 YANG S, ZHANG Z Q, ZHOU J, et al. Financial risk analysis for smes with graph-based supply chain mining [C]// Proceedings of the 29th International Joint Conference on Artificial Intelligence (IJCAI-20), Special Track on AI in FinTech. 2020: 4661-4667.
3 乔宇锋. 智能化金融监管: 模型框架、边缘约束和实践策略. 南方金融, 2021(4), 71- 80.
4 程雪军. 人工智能深度介入消费金融: 动因、风险及防控. 深圳大学学报(人文社会科学版), 2021, 38, 67- 76.
5 PASSERINI F, TONELLO A M. Smart grid monitoring using power line modems: Effect of anomalies on signal propagation. IEEE Access, 2019, (7): 27302- 27312.
6 李炳森, 胡全贵, 陈小峰, 等. 电网企业数据中台的研究与设计. 电力信息与通信技术, 2019, 17, 29- 34.
7 王全兴, 李思韬. 基于采集系统的反窃电技术分析及防范措施. 电测与仪表, 2016, 53, 78- 83.
8 李端超, 王松, 黄太贵, 等. 基于大数据平台的电网线损与窃电预警分析关键技术. 电力系统保护与控制, 2018, 46, 143- 151.
9 张晓新, 王奇超, 林峰, 等. 窄带物联网在专变用户防窃电应用中的研究. 电子器件, 2021, 44, 178- 181.
10 庄池杰, 张斌, 胡军, 等. 基于无监督学习的电力用户异常用电模式检测. 中国电机工程学报, 2016, 36, 379- 387, 594.
11 黄悦华, 郭思涵, 鲍刚, 等. 基于用电特征分析的异常用电检测方法. 三峡大学学报(自然科学版), 2021, 43, 96- 101.
12 ISMAIL FAWAZ H, FORESTIER G, WEBER J, et al. Deep learning for time series classification: A review. Data Mining and Knowledge Discovery, 2019, 33 (4): 917- 963.
13 EBRAHIM S A , J POSHTAN, JAMALI S M, et al. Quantitative and qualitative analysis of time-series classification using deep learning. IEEE Access, 2020, (8): 90202- 90215.
14 WANG Z G, YAN W Z, OATES T. Time series classification from scratch with deep neural networks: A strong baseline [C]// 2017 International Joint Conference on Neural Networks (IJCNN) . IEEE, 2017: 1578-1585.
15 LINES J, DAVIS L M, HILLS J, et al. A shapelet transform for time series classification [C]// Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 2012: 289-297.
16 HE Q, DONG Z, ZHUANG F Z, et al. Fast time series classification based on infrequent shapelets [C]// 2012 11th International Conference on Machine Learning and Applications. IEEE, 2012: 215-219.
17 LE GUENNEC A, MALINOWSKI S, TAVENARD R. Data augmentation for time series classification using convolutional neural network [C/OL]// ECML/PKDD Workshop on Advanced Analytics and Learning on Temporal Data. (2016)[2021-07-02]. https://halshs.archives-ouvertes.fr/halshs-01357973/document.
18 CUI Z, CHEN W, CHEN Y. Multi-scale convolutional neural networks for time series classification [EB/OL]. (2016-05-11)[2021-06-15]. https://arxiv.org/pdf/1603.06995.pdf.
19 曹阳, 闫秋艳, 吴鑫. 不平衡时间序列集成分类算法. 计算机应用, 2021, 41, 651- 656.
20 李艳霞, 柴毅, 胡友强, 等. 不平衡数据分类方法综述. 控制与决策, 2019, 34, 673- 688.
21 LI J, SI Y Y, XU T, et al. Deep convolutional neural network based ECG classification system using information fusion and one-hot encoding techniques [J/OL]. Mathematical Problems in Engineering, (2018-12-02)[2021-07-02]. https://doi.org/10.1155/2018/7354081.
22 REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39 (6): 1137- 1149.
23 CHALAPATHY R, CHAWLA S. Deep Learning for Anomaly Detection: A Survey [EB/OL]. (2019-01-23)[2020-07-02]. https://arxiv.org/pdf/1901.03407.pdf.
文章导航

/