数据分析与应用

YOLO-S: 一种新型轻量的安全帽佩戴检测模型

  • 赵红成 ,
  • 田秀霞 ,
  • 杨泽森 ,
  • 白万荣
展开
  • 1. 上海电力大学 计算机科学与技术学院, 上海 200090
    2. 国网甘肃省电力公司电力科学研究院, 兰州 730070

收稿日期: 2021-08-24

  网络出版日期: 2021-09-28

基金资助

国家自然科学基金(61772327); 国网甘肃省电力公司电力科学研究院横向项目(H2019-275)

YOLO-S: A new lightweight helmet wearing detection model

  • Hongcheng ZHAO ,
  • Xiuxia TIAN ,
  • Zesen YANG ,
  • Wanrong BAI
Expand
  • 1. College of Computer Science and Technology, Shanghai University of Electric Power, Shanghai  200090, China
    2. State Grid Gansu Electric Power Research Institute, Lanzhou 730070, China

Received date: 2021-08-24

  Online published: 2021-09-28

摘要

针对现有施工场所下工人安全帽佩戴检测模型推理耗时长、对硬件要求高, 且复杂多变环境下的训练数据集单一、数量少导致模型鲁棒性较差等问题, 提出了一种轻量化的安全帽佩戴检测模型YOLO-S. 首先, 针对数据集类别不平衡问题, 设计混合场景数据增强方法, 使类别均衡化, 提高模型在复杂施工环境下的鲁棒性; 将原始YOLOv5s主干网络更改为MobileNetV2, 降低了网络计算复杂度. 其次, 对模型进行压缩, 通过在BN层引入缩放因子进行稀疏化训练, 判定各通道重要性, 对冗余通道剪枝, 进一步减少模型推理计算量, 提高模型检测速度. 最后, 通过知识蒸馏辅助模型进行微调得到YOLO-S. 实验结果表明, YOLO-S的召回率及mAP较YOLOv5s分别提高1.9%、1.4%, 模型参数量压缩为YOLOv5s的1/3, 模型体积压缩为YOLOv5s的1/4, FLOPs为YOLOv5s的1/3, 推理速度快于其他模型, 可移植性较高.

本文引用格式

赵红成 , 田秀霞 , 杨泽森 , 白万荣 . YOLO-S: 一种新型轻量的安全帽佩戴检测模型[J]. 华东师范大学学报(自然科学版), 2021 , 2021(5) : 134 -145 . DOI: 10.3969/j.issn.1000-5641.2021.05.012

Abstract

Traditional worker helmet wearing detection models commonly used at construction sites suffer from long processing times and high hardware requirements; the limited number of available training data sets for complex and changing environments, moreover, contributes to poor model robustness. In this paper, we propose a lightweight helmet wearing detection model—named YOLO-S—to address these challenges. First, for the case of unbalanced data set categories, a hybrid scene data augmentation method is used to balance the categories and improve the robustness of the model for complex construction environments; the original YOLOv5s backbone network is changed to MobileNetV2, which reduces the network computational complexity. Second, the model is compressed, and a scaling factor is introduced in the BN layer for sparse training. The importance of each channel is judged, redundant channels are pruned, and the volume of model inference calculations is further reduced; these changes help increase the overall model detection speed. Finally, YOLO-S is achieved by fine-tuning the auxiliary model for knowledge distillation. The experimental results show that the recall rate of YOLO-S is increased by 1.9% compared with YOLOv5s, the mAP of YOLO-S is increased by 1.4% compared with YOLOv5s, the model parameter is compressed to 1/3 of YOLOv5s, the model volume is compressed to 1/4 of YOLOv5s, FLOPs are compressed to 1/3 of YOLOv5s, the reasoning speed is faster than other models, and the portability is higher.

参考文献

1 边星, 晋良海, 陈雁高, 等. 施工作业人员佩戴安全帽行为意向研究. 中国安全科学学报, 2016, 26 (11): 43- 48.
2 李海元. 浅析工程建设项目投资管理与决策. 商讯, 2020, (18): 154- 155.
3 GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation [C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2014: 580-587.
4 GIRSHICK R. Fast R-CNN [C]//Proceedings of the IEEE International Conference on Computer Vision. 2015: 1440-1448.
5 REN S, HE K, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks [C]//Advances in Neural Information Processing Systems. 2015: 91-99.
6 REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection [C]//IEEE Conference on Computer Vision and Pattern Recognition. 2016: 779-788.
7 LIU W, ANGUELOV D, ERHAN D, et al. SSD: Single shot multibox detector [C]//European Conference on Computer Visio. 2016: 21-37.
8 REDMON J, FARHADI A. YOLO9000: Better, faster, stronger [C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017: 7263-7271.
9 LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2020, 42 (2): 318- 327.
10 REDMON J, FARHADI A. YOLOv3: An incremental improvement [EB/OL]. (2018-04-08)[2021-06-12]. https://arxiv.org/abs/1804.02767.
11 BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: Optimal speed and accuracy of object detection [EB/OL]. (2020-04-23)[2021-06-12]. https://arxiv.org/abs/2004.10934.
12 施辉, 陈先桥, 杨英. 改进YOLOv3的安全帽佩戴检测方法. 计算机工程与应用, 2019, 55 (11): 213- 220.
13 方明, 孙腾腾, 邵桢. 基于改进YOLOv2的快速安全帽佩戴情况检测. 光学精密工程, 2019, 27 (5): 1196- 1205.
14 乌民雨, 陈晓辉. 一种基于改进YOLOv3的安全帽检测方法. 信息通信, 2020, (6): 12- 14.
15 徐守坤, 王雅如, 顾玉宛, 等. 基于改进区域卷积神经网络的安全帽佩戴检测. 计算机工程与设计, 2020, 41 (5): 1385- 1389.
16 SANDLER M, HOWARD A, ZHU M, et al. MobileNetV2: Inverted Residuals and Linear Bottlenecks [C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2018: 4510-4520.
17 CHU J, GUO Z, LENG L. Object detection based on multi-layer convolution feature fusion and online hard example mining. IEEE Access, 2018, 19959- 19967.
18 IOFFE S, SZEGEDY C. Batch normalization: accelerating deep network training by reducing internal covariate shift[C]//Proceedings of the 32nd International Conference on Machine Learning. 2015: 448-456.
19 LIU Z, LI J G, SHEN Z Q, et al. Learning efficient convolutional networks through network slimming [C]//Proceedings of 2017 IEEE International Conference on Computer Vision. 2017: 2755-2763.
20 GOU J P, YU B S, MAYBANK S J, et al. Knowledge distillation: A survey [EB/OL]. (2020-06-09)[2021-06-12]. https://arxiv.org/abs/2006.05525.
21 MEHTA R, OZTURK C. Object detection at 200 frames per second [EB/OL]. (2018-05-16)[2021-06-12]. https://arxiv.org/abs/1805.06361.
文章导航

/