数据分析与应用

基于遗传算法的多目标货物配载研究

  • 于萍 ,
  • 胡卉芪 ,
  • 钱卫宁
展开
  • 华东师范大学 数据科学与工程学院, 上海 200062

收稿日期: 2021-07-27

  网络出版日期: 2021-09-28

基金资助

国家自然科学基金(U1911203)

Research on multi-objective cargo allocation based on an improved genetic algorithm

  • Ping YU ,
  • Huiqi HU ,
  • Weining QIAN
Expand
  • School of Data Science and Engineering, East China Normal University, Shanghai 200062, China

Received date: 2021-07-27

  Online published: 2021-09-28

摘要

针对多目标货物配载问题, 建立了以最大化总订单货物重量、最小化车次总数、最小化货物装卸地总数为目标的配载模型, 提出了一种快速收敛的基于精英策略多目标遗传算法(Fast Convergence Based on the Elitism Genetic Algorithm, FEGA). 首先, 在遗传算法的基础上加入Pareto支配关系上的分层结构和精英保留策略, 从而提高种群的多样性, 同时还可以加快算法的局部搜索能力; 其次, 修改初始种群的随机结构, 并加入双种群策略, 添加自适应操作算子, 依次提高算法的全局搜索能力, 加速种群的收敛速度; 最后, 基于新算法, 利用真实的货物数据验证算法的可行性与优化效果. 结果表明, 与传统遗传算法相比, 所提算法在求解强约束条件、庞大搜索空间的货物配载过程中具有较好的优化效果, 搜索性能与收敛性都有所提升.

本文引用格式

于萍 , 胡卉芪 , 钱卫宁 . 基于遗传算法的多目标货物配载研究[J]. 华东师范大学学报(自然科学版), 2021 , 2021(5) : 185 -198 . DOI: 10.3969/j.issn.1000-5641.2021.05.016

Abstract

In this paper, we propose a mathematical model to solve the multi-objective cargo allocation problem with greater stability and efficiency; the model for cargo allocation maximizes the total cargo weight, minimizes the total number of trips, minimizes the number of cargo loading and unloading points, and offers fast convergence based on the elitism genetic algorithm (FEGA). First, a hierarchical structure with the Pareto dominance relation and an elitism retention strategy were added on the basis of the genetic algorithm. This helped to improve the population diversity while accelerating the local search ability of the algorithm. Then, the random structure of the initial population was modified, and a double population strategy was designed. An adaptive operation was subsequently added to sequentially improve the global search ability of the algorithm and accelerate the convergence speed of the population. Based on the new algorithm, real cargo data were used to demonstrate the feasibility and optimization potential of the new method. The results show that compared with the traditional genetic algorithm, the proposed algorithm has a better optimization effect in solving the cargo allocation process with strong constraints and a large search space; the search performance and convergence, moreover, are also improved.

参考文献

1 TIMOTHY R, JASBIR S. The weighted sum method for multi-objective optimization: New insights. Structural and Multidisciplinary Optimization, 2010, 41 (6): 853- 862.
2 PINCHERA D, PERNA S, MIGLIORE M. A lexicographic approach for multi-objective optimization in antenna array design. Progress in Electromagnetics Research, 2017, 59 (2): 85- 102.
3 DAS I, DENNIS J. Normal-boundary intersection: A new method for generating the Pareto surface in nonlinear multicriteria optimization problems. SIAM Journal on Optimization, 1998, 8 (3): 631- 657.
4 MESSAC A, ISMAIL-YAHAYA A, MATTSON C. The normalized normal constraint method for generating the Pareto frontier. Structural and Multidisciplinary Optimization, 2003, 25 (2): 86- 98.
5 MESSAC A, MATTSON C. Normal constraint method with guarantee of even representation of complete Pareto frontier. AIAA Journal, 2004, 42 (10): 2101- 2111.
6 MUELLER D, GRAEB H, SCHLICHTMANN U. A successive approach to compute the bounded Pareto front of practical multi-objective optimization problems. SIAM Journal on Optimization, 2009, 20 (2): 915- 34.
7 TOHID E, SERGEI V. Directed search domain: A method for even generation of the Pareto frontier in multi-objective optimization. Engineering Optimization, 2011, 43 (5): 467- 484.
8 VIKHAR P. Evolutionary algorithms: A critical review and its future prospects [C]//2016 International Conference on Global Trends in Signal Processing, Information Computing and Communication (ICGTSPICC). IEEE, 2016: 261-265.
9 DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multi-objective genetic algorithm: NSGA-II[J]. IEEE Transactions on Evolutionary Computation. 2002, 6(2): 182-197.
10 YI J H, DEB S, DONG J Y, et al. An improved NSGA-III algorithm with adaptive mutation operator for Big Data optimization problems. Future Generation Computer Systems, 2018, 88, 571- 585.
11 KIM M, HIROYASU T, MIKI M, et al. SPEA2+: Improving the performance of the strength Pareto evolutionary algorithm 2[C]//International Conference on Parallel Problem Solving from Nature. New York: Springer, 2004: 742-751.
12 ZHANG Q, LI H. MOEA/D: A multi-objective evolutionary algorithm based on decomposition [J]. IEEE Transactions on Evolutionary Computation, 2008, 11(6): 712-743.
13 ALAYA I, SOLNON C, GHEDIRA K. Ant colony optimization for multi-objective optimization problems [C]//19th IEEE International Conference on Tools with Artificial Intelligence (ICTAI 2007). IEEE, 2007: 450-457.
14 MOSTAGHIM S, TEICH J. Strategies for finding good local guides in multi-objective particle swarm optimization (MOPSO) [C]//Proceedings of the 2003 IEEE Swarm Intelligence Symposium. IEEE, 2003: 26-33.
15 SUMAN B, KUMAR P. A Survey of simulated annealing as a tool for single and multi-objective optimization. The Journal of the Operational Research Society, 2006, 57 (10): 1143- 1160.
16 AN Y J, CHEN X H, LI Y H, et al. An improved non-dominated sorting biogeography-based optimization algorithm for the (hybrid) multi-objective flexible job-shop scheduling problem. Applied Soft Computing, 2021, 99, 106869.
17 WU X, CAO W, WANG D, et al. Multi objective optimization based on SPEA for the microgrid energy dispatch [C]//2018 37th Chinese Control Conference (CCC). IEEE, 2018: 7543-7548.
18 郑斐峰, 梅启煌, 刘明, 等. 基于遗传算法与贪婪策略的多港口集装箱配载研究. 运筹与管理, 2018, 27 (5): 1- 7.
19 覃亮, 王志成. 整车物流中轿运车装载方案优化研究. 系统仿真学报, 2015, 27 (8): 1868- 1874.
20 徐佳毅. 建立整车物流装运模型及最优算法的应用研究 [D].上海: 上海交通大学, 2012.
21 NGATCHOU P, ZAREI A, EI A. Pareto multi objective optimization [C]//Proceedings of the 13th International Conference on Intelligent Systems Application to Power Systems. IEEE, 2005: 84-91.
22 张长勇, 刘佳瑜. 基于混合遗传算法的多箱型集装箱装载问题研究 [J]. 北京航空航天大学学报, 2021. DOI: 10.13700/j.bh.100-5965.2020.0665.
23 张程, 贾宝柱, 邹佳奇. 基于多目标遗传算法的柴电混合动力船舶功率分配优化. 计算机应用与软件, 2021, 38 (3): 26- 31.
24 张闻强, 邢征, 杨卫东. 基于多区域采样策略的混合粒子群优化求解多目标柔性作业车间调度问题 [J]. 计算机应用, 2021, 41(8): 2249-2257.
25 DE J, ALAN K. Analysis of the behavior of a class of genetic adaptive systems [C]//The Transactions of the Institute of Electrical Engineers of Japan. 1975: 721-726.
26 PENG Q K, WANG L, QIAN B. A novel differential evolution algorithm for bi-criteria no-wait flow shop scheduling problems. Computers and Operations Research, 2008, 36 (8): 2498- 2511.
27 ZITZLER E, THIELE L. Multi-objective evolutionary algorithms: A comparative case study and the strength Pareto approach [C]//IEEE Transactions on Evolutionary Computation. IEEE, 1999: 257–271.
文章导航

/