系统关键技术

多主数据库中基于分区的并发控制

  • 刘文欣 ,
  • 蔡鹏
展开
  • 华东师范大学 数据科学与工程学院, 上海 200062

收稿日期: 2021-07-25

  网络出版日期: 2021-09-28

Partition-based concurrency control in a multi-master database

  • Wenxin LIU ,
  • Peng CAI
Expand
  • School of Data Science and Engineering, East China Normal University, Shanghai 200062, China

Received date: 2021-07-25

  Online published: 2021-09-28

摘要

大数据时代, 存储计算架构分离的单写多读场景已无法满足海量数据的高效读写需求; 另一方面, 多个计算节点同时提供写服务还会引起计算节点间的缓存不一致. 已有的研究采用全局有序的事务日志来进行冲突检测, 并通过广播和回放事务日志维护整个系统的数据一致性. 但该类方案由于是在每个写节点维护全局写日志, 可扩展性较差. 针对这些问题, 提出了一个基于分区的并发控制方案: 通过分区的方式降低每个写节点需要维护的事务日志, 以有效提升系统的扩展能力. 基于此想法, 在MySQL上实现了分区多主插件, 并通过实验验证了该解决方案对系统性能的影响.

本文引用格式

刘文欣 , 蔡鹏 . 多主数据库中基于分区的并发控制[J]. 华东师范大学学报(自然科学版), 2021 , 2021(5) : 84 -93 . DOI: 10.3969/j.issn.1000-5641.2021.05.008

Abstract

In the era of big data, the single-write multi-read process with separate storage and computing architectures can no longer meet the demands for efficient reading and writing of massive datasets. Multiple computing nodes providing write services concurrently can also cause cache inconsistencies. Some studies have proposed a global ordered transaction log to detect conflicts and maintain data consistency for the whole system using broadcast and playback of the transaction log. However, this scheme has poor scalability because it maintains the global write log at each write node. To solve this problem, this paper proposes a partition-based concurrency control scheme, which reduces the transaction log maintained by each write node by partitioning, and effectively improves the system’s overall expansion ability.

参考文献

1 HAYAT Z, SOOMRO T R. Implementation of oracle real application cluster. Review of Computer Engineering Studies, 2016, 3 (4): 81- 85.
2 CHONG R F, LIU C. DB2 Essentials: Understanding DB2 in a Big Data World [M]. [S.l]: IBM Press, 2013.
3 BERNSTEIN P A, REID C W, DAS S. Hyder – A transactional record manager for shared flash[C]// CIDR 2011, 5th Biennial Conference on Innovative Data Systems Research. CIDR, 2011: 9-20.
4 THOMSON A, DIAMOND T, WENG S C, et al. Calvin: Fast distributed transactions for partitioned database systems[C]// Proceedings of the 2012 ACM SIGMOD International Conference on Management of Data. ACM, 2012: 1-12.
5 卫孝贤, 刘文欣, 蔡鹏. 多主云数据库的全局事务日志. 华东师范大学学报(自然科学版), 2020, (5): 10- 20.
6 VERBITSKI A, GUPTA A, SAHA D, et al. Amazon aurora: Design considerations for high throughput cloud-native relational databases[C]// Proceedings of the 2017 ACM International Conference on Management of Data. ACM, 2017: 1041-1052.
7 VERBITSKI A, GUPTA A, SAHA D, et al. Amazon aurora: On avoiding distributed consensus for I/Os, commits, and membership changes[C]// Proceedings of the 2018 International Conference on Management of Data. ACM, 2018: 789-796.
8 CAO W, LIU Z J, WANG P, et al. PolarFS: An ultra-low latency and failure resilient distributed file system for shared storage cloud database[J]. Proceedings of the VLDB Endowment, 2018, 11(12): 1849-1862.
9 HUANG G, CHENG X T, WANG J Y, et al. X-engine: An optimized storage engine for large-scale E-commerce transaction Processing[C]// Proceedings of the 2019 International Conference on Management of Data. ACM, 2019: 651-665.
10 ANTONOPOULOS P, BUDOVSKI A, DIACONU C, et al. Socrates: The new SQL server in the cloud[C]// Proceedings of the 2019 International Conference on Management of Data. ACM, 2019: 1743-1756.
11 DEPOUTOVITCH A, CHEN C, CHEN J, et al. Taurus database: How to be fast, available, and frugal in the cloud[C]// Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data. ACM, 2020: 1463-1478.
12 BERNSTEIN P A, DAS S, DING B L, et al. Optimizing optimistic concurrency control for tree-structured, log-structured databases[C]// Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data. ACM, 2015: 1295-1309.
13 BERNSTEIN P A, DAS S. Scaling optimistic concurrency control by approximately partitioning the certifier and log[J]. IEEE Data Eng Bull, 2015, 38: 32-49.
文章导航

/