地理学

基于无人机影像的城市复杂三维绿量快捷估算——以上海植物园为例

  • 罗嘉贝 ,
  • 周莹菲 ,
  • 冷寒冰 ,
  • 孟陈 ,
  • 侯正阳 ,
  • 宋通通 ,
  • 胡正云 ,
  • 张超 ,
  • 奉树成
展开
  • 1. 华东师范大学 地理信息科学教育部重点实验室, 上海 200241
    2. 上海植物园 上海城市植物资源开发应用工程技术研究中心, 上海 200231
    3. 华东师范大学 生态与环境科学学院,上海 200241
    4. 北京林业大学 林学院, 北京 100083
    5. 华东师范大学环境遥感与数据同化联合实验室, 上海 200241

收稿日期: 2020-11-23

  网络出版日期: 2022-01-18

基金资助

上海市科学技术委员会重大项目 (18DZ2283500) ; 国家自然科学基金 (31500392, 31800411, 41876093)

Quick estimation of three-dimensional vegetation volume based on images from an unmanned aerial vehicle: A case study on Shanghai Botanical Garden

  • Jiabei LUO ,
  • Yingfei ZHOU ,
  • Hanbing LENG ,
  • Chen MENG ,
  • Zhengyang HOU ,
  • Tongtong SONG ,
  • Zhengyun HU ,
  • Chao ZHANG ,
  • Shucheng FENG
Expand
  • 1. Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai 200241, China
    2. Shanghai Urban Plant Resources Development and Application Engineering Technology Research Center, Shanghai Botanical Garden, Shanghai 200231, China
    3. School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
    4. College of Forestry, Beijing Forestry University, Beijing 100083, China
    5. The Joint Laboratory for Environmental Remote Sensing and Data Assimilation, East China Normal University, Shanghai 200241, China

Received date: 2020-11-23

  Online published: 2022-01-18

摘要

三维绿量是表征城市植被生态效益的综合指标, 如何在高度异质性的城市生境中精确、快捷地开展三维绿量监测, 是当前城市植被生态效益评估亟待解决的难题. 本研究以上海植物园为对象, 通过无人机航摄系统对上海植物园进行低空高分辨率影像获取, 逐像元提取并计算地表高程模型和冠层高度模型, 对上海植物园三维绿量进行估算, 进而对绿量空间分布格局进行分析. 研究发现: ①无人机影像的整体平面和高程精度优于0.1 m, 冠层高度模型精度的平均误差为0.27 m, 标准差为0.58 m. ②上海植物园的绿量分布呈东北低西南高的格局, 总绿量为3538944.50 m3. 绿量最高的3个园区分别为牡丹园(289491.00 m3)、松柏园(338322.10 m3)和温室附属绿地(360587.50 m3); 绿量最低的3个园区分别为休闲绿地(24761.50 m3)、单子叶植物园(31621.40 m3)和蔷薇园(74607.30 m3); 植物园平均绿量密度为6.51 m3/m2, 最高绿量密度的3个园区分别为兰室(9.23 m3/m2)、蕨类园(11.30 m3/m2)和广玉兰香樟大道(13.11 m3/m2); 绿量密度最低的3个园区分别为休闲绿地(1.57 m3/m2)、科研中心绿地(1.81 m3/m2)和蔷薇园(2.58 m3/m2). ③各专类园绿量与乔木群落分布面积、建群种高度以及两者的乘积显著相关, 各专类园绿量密度与乔木群落面积占专类园比例、建群种高度以及两者的乘积显著相关. 本研究可为城市植被绿量快捷估算提供方法参考, 并为上海植物园绿量估算与空间格局优化提供基础数据.

本文引用格式

罗嘉贝 , 周莹菲 , 冷寒冰 , 孟陈 , 侯正阳 , 宋通通 , 胡正云 , 张超 , 奉树成 . 基于无人机影像的城市复杂三维绿量快捷估算——以上海植物园为例[J]. 华东师范大学学报(自然科学版), 2022 , 2022(1) : 122 -134 . DOI: 10.3969/j.issn.1000-5641.2022.01.014

Abstract

Three-dimensional vegetation volume is a comprehensive index that can be used to represent the ecological benefits of urban vegetation. However, the challenge of how to accurately and quickly carry out three-dimensional vegetation volume monitoring in highly heterogeneous urban habitats is an urgent problem that requires attention. In this paper, we used Shanghai Botanical Garden as a case study. We acquired low-altitude, high-resolution images of Shanghai Botanical Garden through a UAV aerial photography system; after extracting the data, we calculated the surface elevation and canopy height models, estimated the three-dimensional vegetation volume, and analyzed the spatial distribution pattern. The results showed that: ① The overall plane and elevation accuracy of UAV images was better than 0.1 m, and the average error and standard deviation of the canopy height model accuracy was 0.27 m and 0.58 m, respectively. ② The vegetation volume of Shanghai Botanical Garden was distributed in a pattern from northeast low to southwest high, with a total vegetation volume of 3538944.50 m3. The average green density of the botanical garden was 6.51 m3/m2. The three gardens with the highest vegetation volume were: Peony Garden (289491.00 m3), Pinetum Garden (338322.10 m3), and the Green Space Attached to The Greenhouse (360587.50 m3). The three gardens with the lowest vegetation volume were: Recreational Green Space (24761.50 m3), Monocotyledon Botanical Garden (31621.40 m3), and Rose Garden (74607.30 m3). The three gardens with the highest vegetation volume density were: Tropical Orchid Room (9.23 m3/m2), Fern Garden (11.30 m3/m2), and Magnolia and Camphor Avenue (13.11 m3/m2). The three gardens with the lowest vegetation volume density were Recreational Green Space (1.57 m3/m2), Scientific Research Center Green Space (1.81 m3/m2), and Rose Garden (2.58 m3/m2). ③ The vegetation volume of each specialized garden was significantly related to the distribution area of the arbor community, the height of the constructive species, and the product thereof. The vegetation volume density of each specialized garden was significantly related to the proportion of the area of the arbor community in the specialized garden, the height of the constructive species, and the product thereof. This research can serve as a methodology reference for the quick estimation of urban vegetation volume, and provide basic data vegetation volume estimates and spatial pattern optimization for Shanghai Botanical Garden.

参考文献

1 闫慧杰. 植被在城市生态中的主要功能探究. 科技经济导刊, 2019, 27 (21): 103.
2 程安祺, INOSTROZA L. 城市破碎绿化覆盖与热环境的关系——以德国波鸿市为例. 中国城市林业, 2019, 17 (6): 18- 24.
3 尹沛卓. 城市绿地率与绿化覆盖率相关性量化研究 [D]. 济南: 山东建筑大学, 2019.
4 刘洋洋, 章钊颖, 同琳静, 等. 中国草地净初级生产力时空格局及其影响因素. 生态学杂志, 2020, 39 (2): 349- 363.
5 CHEN S L, JIANG H, CHEN Y, et al. Spatial-temporal patterns of net primary production in Anji (China) between 1984 and 2014. Ecological Indicators, 2020, 110, 105954.
6 TRLICA A, HUTYRA L R, MORREALE L L, et al. Current and future biomass carbon uptake in Boston's urban forest. Science of the Total Environment, 2020, 709, 136196.
7 ERIK V, CHEN K W. Carbon storage estimation of tropical urban trees by an improved allometric model for aboveground biomass based on terrestrial laser scanning. Urban Forestry & Urban Greening, 2019, 44, 126387.
8 周坚华. 城市绿量测算模式及信息系统. 地理学报, 2001, 56 (1): 14- 23.
9 周一凡, 周坚华. 绿量快速测算模式. 生态学报, 2006, 26 (12): 4204- 4211.
10 李伟, 贾宝全, 王成, 等. 城市森林三维绿量研究现状与展望. 世界林业研究, 2008, (4): 31- 34.
11 ZHOU J H, QIN J, GAO K, et al. SVM-based soft classification of urban tree species using very high-spatial resolution remote-sensing imagery. International journal of remote sensing, 2016, 37 (11): 2541- 2559.
12 周一凡, 周坚华. 基于绿化三维量的城市生态环境评价系统. 中国园林, 2001, 17 (5): 77- 79.
13 ANDERSON K, HANCOCK S, CASALEGNO S, et al. Visualising the urban green volume: Exploring LiDAR voxels with tangible technologies and virtual models. Landscape and Urban Planning, 2018, 178, 248- 260.
14 ZHOU J, HUANG Y, YU B. Mapping vegetation-covered urban surfaces using seeded region growing in Visible-NIR air photos. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 2017, 8 (5): 2212- 2221.
15 ONG B L. Green plot ratio: An ecological measure for architecture and urban planning. Chinese Landscape Architecture, 2006, 63 (4): 197- 211.
16 王婷婷, 杨学军, 胡松竹, 等. 绿量测算方法比较研究. 中国城市林业, 2010, 8 (4): 36- 38.
17 周一凡, 周坚华. 基于绿化三维量的城市生态环境评价系统. 中国园林, 2001, (5): 78- 80.
18 周坚华, 孙天纵. 三维绿色生物量的遥感模式研究与绿化环境效益估算. 环境遥感, 1995, (3): 162- 174.
19 李祥军, 赵玺, 姜珊, 等. 佳木斯大学校园植物三维绿量的测算. 北方农业学报, 2016, 44 (2): 52- 56.
20 陈宇, 童俊, 姚崇怀. 浅谈国内外三维绿量的研究进展. 国土绿化, 2015, (3): 43- 44.
21 孙克红. 基于Landsat 8卫星影像数据的城市绿量估算研究. 西部大开发(土地开发工程研究), 2019, 4 (2): 6- 10.
22 孙营伟. 基于高分2号遥感数据的三维绿量估算模型研究 [D]. 北京: 中国地质大学(北京), 2017.
23 易扬, 张桂莲, 张浪, 等. 基于高分二号遥感影像的城市植被三维绿量研究. 园林, 2020, (11): 2- 7.
24 陈小祥, 李嘉诚, 徐雅莉. 基于LiDAR点云数据的城市三维绿量分层测算方法研究. 测绘工程, 2018, 27 (9): 40- 45.
25 周雯慧. 基于无人机遥感技术的沈阳某高校三维绿量定量化研究 [D]. 沈阳: 沈阳航空航天大学, 2018.
26 上海市人民政府. 《上海市城市总体规划(2017—2035年)》报告 [EB/OL]. (2018-01-17)[2021-10-22]. www. shanghai. gov. cn/nw42806/.
27 冯代丽, 刘艳红, 王斐, 等. 基于三维绿量的城市绿地生态效益评价综述. 中国农学通报, 2017, 33 (6): 129- 133.
28 ZHENG S J, MENG C, XUE J H, et al. UAV-based spatial patterns of three-dimensional green volume and its influencing factors in the Lingang New City in Shanghai, China [J]. Frontiers of Earth Sciences, 2021. DOI: 10.1007/s11707-021-0896-7.
29 潘蓉婷, 朱晓晔, 曲晓涵, 等. 东北典型校园绿地三维绿量研究. 农家参谋, 2020, 17, 158.
30 LI F X, LI M, FENG X G. High-precision method for estimating the three-dimensional green quantity of an urban forest. Journal of the Indian Society of Remote Sensing, 2021, 49, 1407- 1417.
文章导航

/