物理学与电子学

大气气溶胶中SO3和HSO3的电子结构和微溶剂化作用研究

  • 陈佳楠 ,
  • 李志鹏 ,
  • 蒋延荣 ,
  • 胡竹斌 ,
  • 孙海涛 ,
  • 孙真荣
展开
  • 1. 华东师范大学 精密光谱科学与技术国家重点实验室, 上海 200241
    2. 上海纽约大学 文理学院,上海 200122
    3. 山西大学 极端光学协同创新中心, 太原 030006

收稿日期: 2021-03-24

  网络出版日期: 2022-01-18

Study of electronic structures and the micro-solvation effect of SO3 and HSO3 in atmospheric aerosols

  • Jianan CHEN ,
  • Zhipeng LI ,
  • Yanrong JIANG ,
  • Zhubin HU ,
  • Haitao SUN ,
  • Zhenrong SUN
Expand
  • 1. State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
    2. Division of Arts and Sciences, New York University Shanghai, Shanghai 200122, China
    3. Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China.

Received date: 2021-03-24

  Online published: 2022-01-18

摘要

结合阴离子光电子能谱(Negative Ion Photoelectron Spectroscopy, NIPES)实验和量子化学计算, 研究了广泛存在于大气气溶胶中的SO3和HSO3的电子结构、微溶剂化作用及其稳定化机制. 首先, 基于高分辨NIPES测得了上述两种阴离子SO3和HSO3的垂直电离能((3.31 ± 0.02)和(3.91 ± 0.02) eV)和绝热电离能((3.02 ± 0.05)和(3.56 ± 0.05) eV). 进一步发现, 结合核系综方法和Dyson轨道计算可以很好地模拟实验测得NIPES, 而传统基于态密度方法不能很好地反映核振动效应、电离概率和电离过程中的轨道弛豫效应. 此外, 系统研究了HSO3·(H2O)n (n = 0 ~ 5)体系的微溶剂化效应, 结果发现, 随着水分子数目的增加, 络合体系的稳定性增强, 其中静电作用占主导, 诱导作用也逐渐发挥重要作用. 相信本研究将有利于推动基于硫酸盐的大气气溶胶模型的完善, 为有效控制我国雾霾形成提供基础科学依据.

本文引用格式

陈佳楠 , 李志鹏 , 蒋延荣 , 胡竹斌 , 孙海涛 , 孙真荣 . 大气气溶胶中SO3和HSO3的电子结构和微溶剂化作用研究[J]. 华东师范大学学报(自然科学版), 2022 , 2022(1) : 31 -42 . DOI: 10.3969/j.issn.1000-5641.2022.01.005

Abstract

In this study, we used negative ion photoelectron spectroscopy (NIPES) combined with quantum chemical calculation to explore the electronic structures, micro-solvation effect, and stabilization mechanism of two compounds, SO3 and HSO3, that are readily abundant in the atmosphere. Vertical detachment energies of (3.31 ± 0.02) and (3.91 ± 0.02) eV and adiabatic detachment energies of (3.02 ± 0.05) and (3.56 ± 0.05) eV were measured for SO3 and HSO3, respectively. These results are reproduceable when using a nuclear ensemble approach and Dyson orbitals in the calculation. The typical density of states method, however, cannot demonstrate the nuclear vibration effect, ionization probability, and orbital relaxation effect during the ionization process. We studied the micro-solvation effect of HSO3·(H2O)n (n = 0 ~ 5) and found that system stability was enhanced by an increase in the surrounding water molecules, whereby electrostatic interaction played a dominant role and the induction effect made an increasingly important contribution. We believe this work will help improve the modeling of atmospheric sulfate aerosols and provide a scientific basis for the effective control of haze formation.

参考文献

1 ETHERINGTON J R, COLE J A, FERGUSON S J. The nitrogen and sulphur cycles. Journal of Ecology, 1988, 76 (3): 904.
2 MARCO J F, AGUDELO A C, GANCEDO J R, et al. Surface spectroscopic study of the behaviour of a thin TiN layer as protective coating of iron against corrosion by humid SO2 aggressive environments . Surface and Interface Analysis, 1998, 26 (9): 667- 673.
3 BRüHL C, LELIEVELD J, H?PFNER M, et al. Stratospheric SO2 and sulphate aerosol, model simulations and satellite observations . Atmospheric Chemistry & Physics Discussions, 2013, 13 (4): 11395- 11425.
4 KAIHO K, KAJIWARA Y, NAKANO T, et al. End-permian catastrophe by a bolide impact: Evidence of a gigantic release of sulfur from the mantle. Geology, 2001, 29 (9): 815.
5 王明康, 刘小红. 积云中硫酸盐形成机制的研究. 气象科学, 1990, 10 (2): 157- 165.
6 LIN M, ZHANG X, LI M, et al. Five-S-isotope evidence of two distinct mass-independent sulfur isotope effects and implications for the modern and archean atmospheres. Proceedings of the National Academy of Sciences, 2018, 115 (34): 8541.
7 KOLB C E, JAYNE J T, WORSNOP D R, et al. Gas phase reaction of sulfur trioxide with water vapor. Journal of the American Chemical Society, 1994, 116 (22): 10314- 10315.
8 JAYNE J T, PSCHL U, CHEN Y M, et al. Pressure and temperature dependence of the gas-phase reaction of SO3 with H2O and the heterogeneous reaction of SO3 with H2O/H2SO4 surfaces . The Journal of Physical Chemistry A, 1997, 101 (51): 10000- 10011.
9 LOVEJOY E R, HANSON D R, HUEY L G. Kinetics and products of the gas-phase reaction of SO3 with water . The Journal of Physical Chemistry, 1996, 100 (51): 19911- 19916.
10 POMMERENING C A, BACHRACH S M, SUNDERLIN L S. Addition of protonated water to SO3. The Journal of Physical Chemistry A, 1999, 103 (9): 1214- 1220.
11 KOEVOETS R A, VERSTEEGEN R M, KOOIJMAN H, et al. Molecular recognition in a thermoplastic elastomer. Journal of the American Chemical Society, 2005, 127 (9): 2999- 3003.
12 MOROKUMA K, MUGURUMA C. Ab initio molecular orbital study of the mechanism of the gas phase reaction SO3 + H2O: Importance of the second water molecule . Journal of the American Chemical Society, 1994, 116 (22): 10316- 10317.
13 TOWNSEND T M, ALLANIC A, NOONAN C, et al. Characterization of sulfurous acid, sulfite, and bisulfite aerosol systems. The Journal of Physical Chemistry A, 2012, 116 (16): 4035- 4046.
14 VOEGELE A F, TAUTERMANN C S, RAUCH C, et al. On the formation of the sulfonate ion from hydrated sulfur dioxide. The Journal of Physical Chemistry A, 2004, 108 (17): 3859- 3864.
15 MISIEWICZ J P, MOORE K B, FRANKE P R, et al. Sulfurous and sulfonic acids: predicting the infrared spectrum and setting the surface straight. The Journal of Chemical Physics, 2020, 152 (2): 024302.
16 RISBERG E D, ERIKSSON L, MINK J, et al. Sulfur X-ray absorption and vibrational spectroscopic study of sulfur dioxide, sulfite, and sulfonate solutions and of the substituted sulfonate ions X3CSO3(X = H, Cl, F) . Inorganic Chemistry, 2009, 46 (20): 8332- 8348.
17 HORNER D A, CONNICK R E. Equilibrium quotient for the isomerization of bisulfite ion from HSO3 to SO3H. Inorganic Chemistry, 1986, 25 (14): 2414- 2417.
18 BROWN R E, BARBER F. Ab initio studies of the thermochemistry of the bisulfite and the sulfonate ions and related compounds. The Journal of Physical Chemistry A, 1995, 99 (20): 8071- 8075.
19 VCHIRAWONGKWIN V, PORNPIGANON C, KRITAYAKORNUPONG C, et al. The stability of bisulfite and sulfonate ions in aqueous solution characterized by hydration structure and dynamics. The Journal of Physical Chemistry B, 2012, 116 (37): 11498- 11507.
20 HAYON E, TREININ A, WILF J. Electronic spectra, photochemistry, and autoxidation mechanism of the sulfite-bisulfite-pyrosulfite systems. SO2, SO3, SO4, and SO5 radicals . Journal of the American Chemical Society, 1972, 94 (1): 47- 57.
21 DOBRIN S, BOO B H, ALCONCEL L S, et al. Photoelectron spectroscopy of SO3 at 355 and 266 nm . The Journal of Physical Chemistry A, 2000, 104 (46): 10695- 10700.
22 YANG J, LI L, WANG S, et al. Unraveling a new chemical mechanism of missing sulfate formation in aerosol haze: Gaseous NO2 with aqueous HSO3/SO32–. Journal of the American Chemical Society, 2019, 141 (49): 19312- 19320.
23 WANG X B. Cluster model studies of anion and molecular specificities via electrospray ionization photoelectron spectroscopy. The Journal of Physical Chemistry A, 2017, 121 (7): 1389- 1401.
24 WANG L S, WANG X B. Probing free multiply charged anions using photodetachment photoelectron spectroscopy. The Journal of Physical Chemistry A, 2000, 104 (10): 1978- 1990.
25 WANG L S, DING C F, WANG X B, et al. Photodetachment photoelectron spectroscopy of multiply charged anions using electrospray ionization. Review of Scientific Instruments, 1999, 70 (4): 1957- 1966.
26 WANG L S. Perspective: Electrospray photoelectron spectroscopy: From multiply-charged anions to ultracold anions. The Journal of Chemical Physics, 2015, 143 (4): 040901.
27 GUN J, MODESTOV A, KAMYSHNY A, et al. Electrospray ionization mass spectrometric analysis of aqueous polysulfide solutions. Microchimica Acta, 2004, 146 (3): 229- 237.
28 MANISALI I, CHEN D D Y, SCHNEIDER B B. Electrospray ionization source geometry for mass spectrometry: Past, present, and future. Trends in Analytical Chemistry, 2006, 25 (3): 243- 256.
29 BRUINS A P. Mechanistic aspects of electrospray ionization. Journal of Chromatography A, 1998, 794 (1-2): 345- 357.
30 LU T. Molclus Program [EB/OL]. (2021-11-23)[2021-12-15]. http://www.keinsci.com/research/molclus.html.
31 BANNWARTH C, EHLERT S, GRIMME S. GFN2-xTB-An accurate and broadly parametrized self-consistent tight-binding quantum chemical method with multipole electrostatics and density-dependent dispersion contributions. Journal of Chemical Theory and Computation, 2019, 15 (3): 1652- 1671.
32 FRISCH M J, TRUCKS G W, SCHLEGEL H B, et al. Gaussian 16: Rev.A.03[CP]. Wallingford, CT: Gaussian Inc, 2016.
33 BECKE A D. Density-functional thermochemistry. Ⅲ. The role of exact exchange. The Journal of Chemical Physics, 1993, 98 (7): 5648- 5652.
34 HARIHARAN P C, POPLE J A. The influence of polarization functions on molecular orbital hydrogenation energies. Theoretica Chimica Acta, 1973, 28 (3): 213- 222.
35 DITCHFIE R, HEHRE W J, POPLE J J A. Self-consistent molecular-orbital methods. Ⅸ. An extended Gaussian-type basis for molecular-orbital studies of organic molecules. The Journal of Chemical Physics, 1971, 54 (2): 724- 728.
36 HEHRE W, DITCHFIELD R, POPLE J A. Self-consistent molecular orbital methods. Ⅻ. Further extensions of Gaussian-type basis sets for use in molecular orbital studies of organic molecules. The Journal of Chemical Physics, 1972, 56 (5): 2257- 2261.
37 YANG B, RODGERS M T. Alkali metal cation binding affinities of cytosine in the gas phase: revisited. Physical Chemistry Chemical Physics, 2014, 16 (30): 16110- 16120.
38 SILVERSTONE H, SINANO?LU O. Many-electron theory of nonclosed-shell atoms and molecules. I. Orbital wavefunction and perturbation theory. The Journal of Chemical Physics, 1966, 44 (5): 1899- 1907.
39 WOON D, DUNNING T. Gaussian basis sets for use in correlated molecular calculations. Ⅲ. The atoms aluminum through argon. The Journal of Chemical Physics, 1993, 98, 1358- 1371.
40 PURVIS G, BARTLETT R. A full coupled-cluster singles and doubles model: The inclusion of disconnected triples. The Journal of Chemical Physics, 1982, 76 (4): 1910- 1918.
41 ARBELO-GONZáLEZ W, CRESPO-OTERO R, BARBATTI M. Steady and time-resolved photoelectron spectra based on nuclear ensembles. Journal of Chemical Theory and Computation, 2016, 12 (10): 5037- 5049.
42 KOSSOSKI F, BARBATTI M. Nuclear ensemble approach with importance sampling. Journal of Chemical Theory and Computation, 2018, 14 (6): 3173- 3183.
43 MELANIA O C, KRYLOV A I. Dyson orbitals for ionization from the ground and electronically excited states within equation-of-motion coupled-cluster formalism: Theory, implementation, and examples. The Journal of Chemical Physics, 2007, 127 (23): 234106.
44 BARBATTI M, RUCKENBAUER M, PLASSER F, et al. Newton-X: A surface-hopping program for nonadiabatic molecular dynamics. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2014, 4 (1): 26- 33.
45 TOZER D, HANDY N. Improving virtual Kohn-Sham orbitals and eigenvalues: Application to excitation energies and static polarizabilities. The Journal of Chemical Physics, 1998, 109, 10180- 10189.
46 QIN Z, HOU G L, YANG Z, et al. Negative ion photoelectron spectra of ISO3, IS2O3, and IS2O4 intermediates formed in interfacial reactions of ozone and iodide/sulfite aqueous microdroplets . The Journal of Chemical Physics, 2016, 145 (21): 214310.
47 LU T, CHEN F. Multiwfn: A multifunctional wavefunction analyzer. Journal of Computational Chemistry, 2012, 33 (5): 580- 592.
48 HUMPHREY W, DALKE A, SCHULTEN K. VMD: Visual molecular dynamics. Journal of Molecular Graphics, 1996, 14 (1): 33- 38.
49 TURNEY J M, SIMMONETT A C, PARRISH R M, et al. PSI4: An open-source ab initio electronic structure program. WIRES: Computational Molecular Science, 2012, 2 (4): 556.
50 DUNNING T H. Gaussian basis sets for use in correlated molecular calculations. Ⅰ. The atoms boron through neon and hydrogen. The Journal of Chemical Physics, 1989, 90 (2): 1007- 1023.
文章导航

/