地理学

空间视域下义务教育质量对房价的影响

  • 杨慧 ,
  • 曾进 ,
  • 杨乃 ,
  • 孔凡敏
展开
  • 1. 中国地质大学 地理与信息工程学院, 武汉 430078
    2. 湖北第二师范学院 马克思主义学院, 武汉 430205

收稿日期: 2020-11-18

  网络出版日期: 2022-01-18

基金资助

2020年湖北省社科基金 (2020039)

Effect of compulsory education school quality on housing prices from a spatial perspective

  • Hui YANG ,
  • Jin ZENG ,
  • Nai YANG ,
  • Fanmin KONG
Expand
  • 1. School of Geography and Information Engineering, China University of Geosciences, Wuhan 430078, China
    2. Academy of Marxism, Hubei University of Education, Wuhan 430205, China

Received date: 2020-11-18

  Online published: 2022-01-18

摘要

以湖北省武汉市为例, 通过收集搜房网、家长帮、武汉市教育局等网站的学校和房价数据, 借用地理加权回归 (Geographic Weighted Regression, GWR) 方法探究义务教育质量对房价的影响, 运用反距离权重插值法进行可视化分析. 结果表明: ①义务教育质量对房价具有正相关影响, 省级示范学校对房价的溢价程度相对较高; ②初中质量的资本化效应高于小学; ③新城区的中小学教育质量对房价的影响较大, 江岸区中部及北部地区的对口中小学组合质量对房价的影响最大, 武昌区、硚口区和江汉区学校质量整体上对房价影响较小.

本文引用格式

杨慧 , 曾进 , 杨乃 , 孔凡敏 . 空间视域下义务教育质量对房价的影响[J]. 华东师范大学学报(自然科学版), 2022 , 2022(1) : 97 -108 . DOI: 10.3969/j.issn.1000-5641.2022.01.012

Abstract

In this study, we used the geographic weighted regression (GWR) method to explore the impact of compulsory education quality on housing prices. For the purpose of this analysis, we considered Wuhan in Hubei Province as the study area and collected school and housing price data from websites such as Sofang.com, Jzb.com, Whjyj.gov.cn, etc. We also used the inverse distance weighted (IDW) method for visual analysis. The results showed that: ① The quality of compulsory education has a positive impact on housing prices, and provincial demonstration schools, in particular, create a relatively high price premium on housing prices; ② The capitalization effect of the quality of junior high school is higher than that of elementary school; ③ The quality of primary and junior high school education in new urban areas has the greatest impact on housing prices. The quality of the combination of primary and junior high schools in the central and northern areas of Jiangan District had a significant impact on housing prices, while the quality of schools in the Wuchang, Qiaokou, and Jianghan districts had relatively less impact on housing prices as a whole.

参考文献

1 涂然, 周锐, 王新军. 城市基础教育设施的空间可达性与公平性研究——以上海市浦西8区小学为例. 复旦学报(自然科学版), 2019, 58 (6): 747- 755.
2 李明桥. 教育发展水平与机会公平性省际差异研究. 统计与信息论坛, 2019, 34 (12): 110- 116.
3 张艳华. 教育机会公平性失衡及其制度性原因研究. 调研世界, 2012, (6): 53- 58.
4 石霏, 何晓燕. 学校教育质量对房产价格的溢出效应: 一个文献综述. 教育与经济, 2018, 34 (1): 19- 26.
5 张珂, 张立新, 朱道林. 城市基础教育资源对住宅价格的影响——以北京市海淀区为例. 教育与经济, 2018, 34 (1): 27- 34.
6 马艳, 杨晗. 学区房的教育级差地租及其不平等效应研究. 财经研究, 2020, 46 (5): 37- 51.
7 TIEBOUT C M. A pure theory of local expenditures. Journal of Political Economy, 1956, 64 (5): 416- 424.
8 OATES W E. The effects of property taxes and local public spending on property values: An empirical study of tax capitalization and the tiebout hypothesis. Journal of Political Economy, 1969, 77 (6): 957- 971.
9 YINGER J. Capitalization and the theory of local public finance. Journal of Political Economy, 1982, 90 (5): 917- 943.
10 刘润秋, 孙潇雅. 教育质量“资本化”对住房价格的影响——基于成都市武侯区小学学区房的实证分析. 财经科学, 2015, (8): 91- 99.
11 LUCAS S R. Effectively maintained inequality: Education transitions, track mobility, and social background effects. American Journal of Sociology, 2001, 106 (6): 1642- 1690.
12 LANCASTER K J. A new approach to consumer theory. Journal of Political Economy, 1966, 74 (2): 132- 157.
13 ROSEN S. Hedonic prices and implicit markets: Product differentiation in pure competition. Journal of Political Economy, 1974, 82 (1): 34- 55.
14 汪佳莉, 季民河, 邓中伟. 基于地理加权特征价格法的上海外环内住宅租金分布成因分析. 地域研究与开发, 2016, 35 (5): 72- 80.
15 JUDD G D, WATTS J M. Schools and housing values. Land Economics, 1981, 57 (3): 459- 470.
16 NGUYEN-HOANG P, YINGER J. The capitalization of school quality into house values: A review. Journal of Housing Economics, 2011, 20 (1): 30- 48.
17 FLEISHMAN L, FOGEL N, FRIDMAN I, et al. The effect of school performance on property values: A literature review and a case study. Journal of European Real Estate Research, 2017, 10 (3): 277- 302.
18 FERNANDEZ M A, BUCARAM S. The changing face of environmental amenities: Heterogeneity across housing submarkets and time. Land Use Policy, 2019, 83, 449- 460.
19 BRASINGTON D M, HITE D, JAUREGUI A. House price impacts of racial, income, education, and age neighborhood segregation. Journal of Regional Science, 2015, 55 (3): 442- 467.
20 WEN H Z, XIAO Y, ZHANG L. School district, education quality, and housing price: Evidence from a natural experiment in Hangzhou, China. Cities, 2017, 66, 72- 80.
21 王永超, 王光宇, 董丽晶. 教育资本化背景下学区房溢价水平和价格空间集聚特征研究——以沈阳市中心城区为例. 人口与发展, 2020, 26 (1): 108- 117.
22 周业安, 王一子. 教育资源、教育政策对城市居住用地价格的影响——基于北京市土地市场的数据分析. 中国人民大学学报, 2015, 29 (5): 79- 89.
23 HU L R, HE S J, LUO Y, et al. A social-media-based approach to assessing the effectiveness of equitable housing policy in mitigating education accessibility induced social inequalities in Shanghai, China. Land Use Policy, 2020, 94, 1- 17.
24 WANG D, NICOLAU J L. Price determinants of sharing economy based accommodation rental: A study of listings from 33 cities on Airbnb. com. International Journal of Hospitality Management, 2017, 62, 120- 131.
25 RAE A, SENER E. How website users segment a city: The geography of housing search in London. Cities, 2016, 52, 140- 147.
26 GEOFF B, PAUL W. New insights into rental housing markets across the United States: Web scraping and analyzing craigslist rental listings. Journal of Planning Education and Research, 2017, 37 (4): 457- 476.
27 HU L R, HE S J, HAN Z X, et al. Monitoring housing rental prices based on social media: An integrated approach of machine-learning algorithms and hedonic modeling to inform equitable housing policies. Land Use Policy, 2019, 82, 657- 673.
28 KIM C W, PHIPPS T T, ANSELIN L. Measuring the benefits of air quality improvement: A spatial hedonic approach. Journal of Environmental Economics and Management, 2003, 45 (1): 24- 39.
29 吕志芳, 陈英. 西部中小城市住宅地价空间分异规律及影响因素研究——以天水市为例. 甘肃农业大学学报, 2017, 52 (5): 112- 120.
30 LI H, REYNOLDS J F. On definition and quantification of heterogeneity. Oikos, 1995, 73 (2): 280- 284.
31 彭薇, 冯邦彦. 经济学关于空间异质性的研究综述. 华东经济管理, 2013, 27 (3): 155- 160.
32 BRUNSDON C, FOTHERINGHAM A S, CHARLTON M. Some notes on parametric significance tests for geographically weighted regression. Journal of Regional Science, 1999, 39 (3): 497- 524.
33 FOTHERINGHAM A S, CHARLTON M E. Geographically weighted regression: A natural evolution of the expansion method for spatial data analysis. Environment and Planning A, 1998, 30 (11): 1905- 1927.
34 武汉市人民政府. 地理位置[EB/OL]. (2020-03-29)[2021-02-13]. http://www.wuhan.gov.cn/zjwh/whgk/202003/t20200316_976488.shtml.
35 中华人民共和国教育部. 教育部办公厅关于进一步做好重点大城市义务教育免试就近入学工作的通知[EB/OL]. (2014-01-18)[2021-10-13]. http://www.moe.gov.cn/srcsite/A06/s3321/201401/t20140129_164088.html.
36 李博. 2020年武汉市人民政府工作报告(全文)[EB/OL]. (2020-01-03)[2020-11-16]. http://hb.china.com.cn/2020-01/13/content_41032171.htm.
37 武汉市人民政府. 固定资产投资和房地产开发[EB/OL]. (2019-12-25)[2021-02-13]. http://www.wuhan.gov.cn/zjwh/jjfz/202003/t20200316_976499.shtml, 2019-12-25.
38 梁立雨, 郭志强, 李军祥, 等. 中学学区对周边小区二手房房价的溢价分析——以深圳市为例. 北京大学学报(自然科学版), 2019, 55 (3): 537- 542.
39 HILBER C A L , MAYER C. Why do households without children support local public schools? Linking house price capitalization to school spending. Journal of Urban Economics, 2008, 65 (1): 74- 90.
40 GLEN J, NELLIS J G. “The price you pay”: The impact of state-funded secondary school performance on residential property values in England. Panoeconomicus, 2010, 57 (4): 405- 428.
41 FACK G, GRENET J. When do better schools raise housing prices? Evidence from Paris public and private schools. Journal of Public Economics, 2010, 94 (1/2): 59- 77.
42 王德, 黄万枢. Hedonic 住宅价格法及其应用. 城市规划, 2005, (3): 74- 90.
43 朱丹, 董有福. 利用局部Moran’s I 指数进行DEM地形简化. 武汉大学学报(信息科学版), 2015, 40 (2): 280- 284.
44 王珂靖, 蔡红艳, 杨小唤. 多元统计回归及地理加权回归方法在多尺度人口空间化研究中的应用. 地理科学进展, 2016, 35 (12): 1494- 1505.
45 BRUNSDON C, FOTHERINGHAM A S, CHARLTON M E. Geographically weighted regression: A method for exploring spatial nonstationarity. Geographical Analysis, 1996, 28 (4): 281- 298.
46 张羽鹤. 基于GWR模型的北京市二手房价格空间分异及影响因素研究 [D]. 北京: 中国地质大学(北京), 2018.
47 PáEZ A, WHEELER D C. Geographically weighted regression. International Encyclopedia of Human Geography, 2009, 47 (1): 407- 414.
48 FORTHERINGHAM A S, BRUNSDON C, CHARLTON M. Geographically Weighted Regression [M]. West Sussex, UK: John Wiley& Sons Ltd, 2002.
49 卢宾宾, 葛咏, 秦昆, 等. 地理加权回归分析技术综述. 武汉大学学报(信息科学版), 2020, 45 (9): 1356- 1366.
50 CHO S H, LAMBERT D M, CHEN Z. Geographically weighted regression bandwidth selection and spatial autocorrelation: An empirical example using Chinese agriculture data. Applied Economics Letters, 2010, 17 (8): 767- 772.
51 CAMERON A C, TRIVEDI P K. Microeconometrics: Methods and Applications [M]. New York: Cambridge University Press, 2008.
52 NAKAYA T. GWR4 User manual: Windows application for geographically weighted regression modelling [Z/OL]. [2021-10-11]. https://gwr.maynoothuniversity.ie/wp-content/uploads/2013/04/GWR4_Manual.pdf.
53 FARBER S, PáEZ A. A systematic investigation of cross-validation in GWR model estimation: Empirical analysis and Monte Carlo simulations. Journal of Geographical Systems, 2007, 9 (4): 371- 396.
54 AKAIKE H. Information theory and an extension of the maximum likelihood principle [C]// 2nd International Symposium on Information Theory. Armenia: Tsahkadsor, 1973.
55 孙逸, 卢宾宾, 谢嘉仪. 考量空间关系异质性影响的房价预测模型研究. 测绘地理信息, 2020, 45 (6): 132- 137.
56 中华人民共和国教育部. 教育部等四部门关于印发《高中阶段教育普及攻坚计划(2017—2020年)》的通知 [EB/OL]. (2017-03-30)[2021-10-13]. http://www.moe.gov.cn/srcsite/A06/s7053/201704/t20170406_301981.html.
文章导航

/