收稿日期: 2021-06-16
录用日期: 2021-10-25
网络出版日期: 2022-05-19
基金资助
国家自然科学基金 (41906184); 福建省自然科学基金 (2020J05232); 厦门理工学院高层次人才项目 (YKJ20005R)
Inversion methods for typhoon wind fields using Sentinel-1
Received date: 2021-06-16
Accepted date: 2021-10-25
Online published: 2022-05-19
合成孔径雷达 (Synthetic Aperture Radar, SAR) 的交叉极化数据在高风速条件下不会出现信号饱和现象, 能够在全天时和全天候的条件下提供大范围的高风速风场信息, 在台风监测上具有极大的潜力. 欧空局发射的哨兵1号卫星是目前少数几颗可提供交叉极化数据的在轨SAR卫星, 以该系列卫星的交叉极化影像为数据源, 利用2011—2021年十年来开发的C波段交叉极化海洋模型 (C-band Cross Polarization Ocean model, C-2PO) 、C波段交叉极化耦合参数海洋模型 (C-band Cross-Polarization Coupled-Parameters Ocean model, C-3PO) 及全极化条带交叉极化模型 (Quad-polarization Stripmap Cross-polarization model, QPS-CP) 等7种模型, 对2020年的“海高斯”和“莫拉菲”两个台风的风场进行了估算, 并将噪音去除的方法应用于超宽幅模式影像的处理. 结果表明, 噪音去除方法的应用可以有效减弱噪音对台风影像的影响, 改善风场反演的结果. 在反演高风速时, C-3PO模型的相对误差较小, 但与哨兵1号海洋产品的对比分析发现, 其在中低风速的估算上存在一定误差; 交叉极化模型结果与已有风场产品的融合, 能够很好地再现台风外部中低风速以及内部的海表高风速信息, 对于台风监测、台风致灾的模拟预报和研究具有重要的参考价值.
于鹏 , 钟小菁 , 耿旭朴 . 基于哨兵1号的台风风场反演方法研究[J]. 华东师范大学学报(自然科学版), 2022 , 2022(3) : 125 -136 . DOI: 10.3969/j.issn.1000-5641.2022.03.013
Under high-speed wind conditions, cross-polarization synthetic aperture radar (SAR) is not affected by signal saturation. Hence, SAR can be used to observe expansive, high-speed wind fields under all-weather, day- and night-time conditions and offers great potential for monitoring typhoons. Sentinel-1, which was launched by the European Space Agency (ESA), is one of the few available SAR satellites in orbit at present that can provide cross-polarization data. Based on Sentinel-1 cross-polarization data, seven different cross-polarization models, including the C-band cross polarization ocean model (C-2PO), C-band cross-polarization coupled-parameters ocean model (C-3PO), and quad-polarization stripmap cross-polarization model (QPS-CP), developed from 2011 to 2021 were used to estimate the typhoon wind fields of Higos and Molave. A denoising method was applied to remove the noise from extra wide (EW) mode SAR images. The results show that the denoising method can effectively reduce the noise and improve the retrieved wind fields. The C-3PO model performs well in monitoring high-speed winds, but does not obtain reliable results for low- to moderate-speed winds compared with the Sentinel-1 Level-2 Ocean (OCN) product. By merging results from the cross-polarization model and the OCN wind product, the combined wind field can effectively reproduce the inner high-speed winds and outer relative low-speed winds. This study is of significant value for forecasting, data assimilation, and research of typhoon disasters.
Key words: Sentinel-1; typhoon; SAR; cross-polarization
1 | 端义宏, 陈联寿, 许映龙, 等. 我国台风监测预报预警体系的现状及建议. 中国工程科学, 2012, 14 (9): 4- 9. |
2 | 尤再进. 中国海岸带淹没和侵蚀重大灾害及减灾策略. 中国科学院院刊, 2016, 31 (10): 1190- 1196. |
3 | STOFFELEN A, ANDERSON D. Scatterometer data interpretation: Estimation and validation of the transfer function CMOD4. Journal of Geophysical Research: Oceans, 1997, 102 (C3): 5767- 5780. |
4 | QUILFEN Y, CHAPRON B, ELFOUHAILY T, et al. Observation of tropical cyclones by high-resolution scatterometry. Journal of Geophysical Research:Oceans, 1998, 103 (C4): 7767- 7786. |
5 | HERSBACH H. Comparison of c-band scatterometer CMOD5. N equivalent neutral winds with ECMWF. Journal of Atmospheric and Oceanic Technology, 2010, 27 (4): 721- 736. |
6 | STOFFELEN A, VERSPEEK J A, VOGELZANG J, et al. The CMOD7 geophysical model function for ASCAT and ERS wind retrievals. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10 (5): 2123- 2134. |
7 | DONNELLY W J, CARSWELL J R, MCINTOSH R E, et al. Revised ocean backscatter models at C and Ku band under high-wind conditions. Journal of Geophysical Research: Oceans, 1999, 104 (C5): 11485- 11497. |
8 | DONELAN M A, HAUS B K, REUL N, et al. On the limiting aerodynamic roughness of the ocean in very strong winds. Geophysical Research Letters, 2004, 31 (18): 1- 5. |
9 | SHEN H, HE Y, PERRIE W. Speed ambiguity in hurricane wind retrieval from SAR imagery. International Journal of Remote Sensing, 2009, 30 (11): 2827- 2836. |
10 | 李晓峰, 张彪, 杨晓峰. 星载合成孔径雷达遥感海洋风场波浪场. 雷达学报, 2020, 9 (3): 425- 443. |
11 | KOCH W. Directional analysis of SAR images aiming at wind direction. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42 (4): 702- 710. |
12 | KUDRYAVTSEV V, JOHANNESSEN J. On effect of wave breaking on short wind waves. Geophysical Research Letters, 2004, 31, L20310. |
13 | HWANG P A, ZHANG B, PERRIE W. Depolarized radar return for breaking wave measurement and hurricane wind retrieval. Geophysical Research Letters, 2010, 37, L01604. |
14 | FOIS F, HOOGEBOOM P, LE CHEVALIER F, et al. Future ocean scatterometry: On the use of cross-polar scattering to observe very high winds. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53 (9): 5009- 5020. |
15 | MOUCHE A, CHAPRON B. Global C-band envisat, RADARSAT-2 and Sentinel-1 SAR measurements in copolarization and cross-polarization. Journal of Geophysical Research:Oceans, 2015, 120 (11): 7195- 7207. |
16 | VACHON P W, WOLFE J. C-band cross-polarization wind speed retrieval. IEEE Geoscience and Remote Sensing Letters, 2011, 8 (3): 456- 459. |
17 | ZHANG B, PERRIE W. Cross-polarized synthetic aperture radar: A new potential measurement technique for hurricanes. Bulletin of the American Meteorological Society, 2012, 93 (4): 531- 541. |
18 | ZHANG B, PERRIE W, ZHANG J A, et al. High-resolution hurricane vector winds from C-band Dual-polarization SAR observations. Journal of Atmospheric and Oceanic Technology, 2014, 31 (2): 272- 286. |
19 | VAN ZADELHOFF G J, STOFFELEN A, VACHON P W, et al. Retrieving hurricane wind speeds using cross-polarization C-band measurements. Atmospheric Measurement Techniques, 2014, 7 (2): 437- 449. |
20 | ZHANG G, LI X, PERRIE W, et al. A hurricane wind speed retrieval model for C-band RADARSAT-2 Cross-polarization ScanSAR images. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55 (8): 4766- 4774. |
21 | ZHANG T, LI X, FENG Q, et al. Retrieval of sea surface wind speeds from Gaofen-3 full polarimetric data. Remote Sensing, 2019, 11 (7): 813. |
22 | FANG H, PERRIE W, FAN G, et al. High-resolution sea surface wind speeds of Super Typhoon Lekima (2019) retrieved by Gaofen-3 SAR [J]. Frontiers of Earth Science, 2021. DOI: 10.1007/s11707-021-0887-8. |
23 | 王旻燕, 姚爽, 姜立鹏, 等. 我国全球大气再分析(CRA-40)卫星遥感资料的收集和预处理. 气象科技进展, 2018, 8 (1): 158- 163. |
24 | 王隽, 杨劲松, 黄韦艮, 等. 多视处理对SAR船只探测的影响. 遥感学报, 2008, 12 (3): 399- 404. |
25 | PARK J, WON J, KOROSOV A A, et al. Textural noise correction for Sentinel-1 TOPSAR Cross-polarization channel images. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57 (6): 4040- 4049. |
26 | YU P, JOHANNESSEN J A, YAN X, et al. A study of the intensity of tropical cyclone Idai using Dual-polarization Sentinel-1 data. Remote Sensing, 2019, 11 (23): 2837. |
27 | SUN Y, LI X. Denoising Sentinel-1 extra-wide mode cross-polarization images over sea ice. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59 (3): 2116- 2131. |
28 | MOUCHE A A, CHAPRON B, ZHANG B, et al. Combined co- and cross-polarized SAR measurements under extreme wind conditions. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55 (12): 6746- 6755. |
29 | JIANG Z, LI Y, YU F, et al. A damped Newton variational inversion method for SAR wind retrieval. Journal of Geophysical Research: Atmospheres, 2017, 122 (2): 823- 845. |
30 | PORTABELLA M, STOFFELEN A, JOHANNESSEN J A. Toward an optimal inversion method for synthetic aperture radar wind retrieval. Journal of Geophysical Research: Oceans, 2002, 107, 3086C8. |
31 | CHRISTIANSEN M B, KOCH W, HORSTMANN J, et al. Wind resource assessment from C-band SAR. Remote Sensing of Environment, 2006, 105 (1): 68- 81. |
32 | 戚纤云, 周云轩, 田波, 等. 基于Sentinel-1A的长江口近岸风矢量场反演研究. 华东师范大学学报(自然科学版), 2017, (6): 126- 135. |
33 | TOURNADRE J, QUILFEN Y. Impact of rain cell on scatterometer data: 1. Theory and modeling. Journal of Geophysical Research: Oceans, 2003, 108 (C7): 1- 18. |
34 | ALPERS W, ZHANG B, MOUCHE A, et al. Rain footprints on C-band synthetic aperture radar images of the ocean-revisited. Remote Sensing of Environment, 2016, 187, 169- 185. |
35 | ZHANG G, LI X, PERRIE W, et al. Rain effects on the hurricane observations over the ocean by C-band Synthetic Aperture Radar. Journal of Geophysical Research:Oceans, 2016, 121 (1): 14- 26. |
36 | XUE S, GENG X, MENG L, et al. HISEA-1: The first C-band SAR miniaturized satellite for ocean and coastal observation. Remote Sensing, 2021, 13 (11): 2076. |
/
〈 |
|
〉 |