地理学

中国砂石资源利用的现状、问题与解决对策研究

  • 庄淑蓉 ,
  • TORRESAurora ,
  • 陈睿山 ,
  • 叶超
展开
  • 1. 华东师范大学 地理科学学院, 上海 200241
    2. 鲁汶天主教大学 地球与生命研究所 乔治·勒梅特地球和气候研究中心, 新鲁汶 1348, 比利时
    3. 密歇根州立大学 渔业和野生动物系 系统整合与可持续性中心, 密歇根州 东兰辛 48823, 美国
庄淑蓉, 女, 博士研究生, 研究方向为自然资源与可持续发展. E-mail: bonniezsr@163.com

收稿日期: 2021-03-23

  录用日期: 2021-09-29

  网络出版日期: 2022-05-19

基金资助

国家社科基金重大项目 (20ZDA085); 国家自然科学基金 (41771119, 41701186); 中国地质调查局发展研究中心项目 (DD20190427)

Trends, challenges, and mitigation strategies for the use of sand and gravel resources in China

  • Shurong ZHUANG ,
  • Aurora TORRES ,
  • Ruishan CHEN ,
  • Chao YE
Expand
  • 1. School of Geographic Sciences, East China Normal University, Shanghai 200241, China
    2. Georges Lema?tre Earth and Climate Research Centre, Earth and Life Institute, Université catholique de Louvain, Louvain-la-Neuve 1348, Belgium
    3. Center for Systems Integration and Sustainability, Department of Fisheries and Wildlife, Michigan State University, East Lansing 48823, Michigan, USA

Received date: 2021-03-23

  Accepted date: 2021-09-29

  Online published: 2022-05-19

摘要

以统计数据和现有研究为基础, 本文概述了中国砂石的利用现状, 包括当前砂石的价格变化趋势, 供需冲突以及资源开采、运输和使用的影响. 研究发现: ① 在过去的二十年中, 全国对砂石资源的需求持续增长, 但河砂的供应却逐渐减少, 机制砂石已成为建筑骨料的主要来源. ② 存在与砂石开采、运输和消费相关的重大环境、经济和社会影响, 包括非法供应网络的出现. 为切实保障国家新基建的部署、社会经济可持续发展和生态文明建设, 以及确定供应瓶颈和更有效地利用资源, 提出了确保砂石资源供应, 最小化砂石开采影响并促进中国砂石骨料行业可持续发展的解决对策. 这些对策包括: 对涵盖天然砂石和机制砂石的砂石资源的流量和存量进行量化, 并建立可靠的数据监测系统; 增加投资并建立相关机构, 以优化供应系统和减少其影响, 并加强监管框架, 促进替代材料的使用, 建立砂石行业的标准和实施最佳使用实践; 进行跨学科的综合研究, 以分析与砂石资源供应有关的挑战和应对策略的潜力和风险.

本文引用格式

庄淑蓉 , TORRESAurora , 陈睿山 , 叶超 . 中国砂石资源利用的现状、问题与解决对策研究[J]. 华东师范大学学报(自然科学版), 2022 , 2022(3) : 137 -147 . DOI: 10.3969/j.issn.1000-5641.2022.03.014

Abstract

Sand, gravel, and crushed rock—together referred to as construction aggregates—are the world’s most extracted solid materials by mass. China’s annual consumption of construction aggregates reached over 20 billion tons in 2018, accounting for nearly half of global consumption. This article provides an overview of the use of sand and gravel in China, including current supply and demand conflicts and the impacts of mining, transportation, and use. We highlight that: ① the national demand for sand and gravel has continued to grow in the last two decades; crushed rock has become the main source of construction aggregates, whereas the supply of river sand has significantly declined; and ② there are significant environmental, economic, and social challenges associated with sand and gravel mining, transportation, and use, including the emergence of illicit supply networks. We then discuss opportunities to ensure sand and gravel supply, minimize mining impacts, and promote sustainable trajectories for the Chinese aggregates industry. First, the quantification of the material flows and stocks of construction aggregates that includes geological and anthropogenic stocks is crucial to identify supply bottlenecks and ensure more efficient use of resources. This requires establishing a reliable data monitoring system. Second, the government should increase investment and establish relevant institutions to optimize supply systems and minimize their impacts, strengthen the regulatory framework, promote the uptake of alternative materials, and establish standards and implement best practices in the aggregates industry. Finally, interdisciplinary integrated research is needed to analyze the existing challenges associated with the supply of sand and gravel resources as well as the potential and risks of adaptation strategies.

参考文献

1 SCHANDL H, FISCHER-KOWALSKI M, WEST J, et al. Global Material Flows and Resource Productivity: An Assessment Study of the UNEP International Resource Panel [M]. Paris: United Nations Environment Programme, 2016.
2 KRAUSMANN F, GINGRICH S, EISENMENGER N, et al. Growth in global materials use, GDP and population during the 20th century. Ecological Economics, 2009, 68, 2696- 2705.
3 MIATTO A, SCHANDL H, FISHMAN T, et al. Global patterns and trends for non-metallic minerals used for construction: Global non-metallic minerals account. Journal of Industrial Ecology, 2017, 21 (4): 924- 937.
4 UNITED NATIONS ENVIRONMENT PROGRAMME (UNEP). Rising demand for sand calls for resource governance [EB/OL]. (2019-07-05)[2021-04-30]. http://www.unep.org/news-and-stories/press-release/rising-demand-sand-calls-resource-governance.
5 GALLAGHER L, PEDUZZI P. Sand and sustainability: Finding new solutions for environmental governance of global sand resources [R]. United Nations Environment Programme, 2019.
6 TORRES A, BRANDT J, LEAR K, et al. A looming tragedy of the sand commons. Science, 2017, 357 (6355): 970- 971.
7 HINTON J, LYSTER O, KATUSIIME J, et al. Baseline assessment of development minerals in Uganda: Volume 1 [R]. ACP-EU Development Minerals Programme, United Nations Development Programme, 2018.
8 MAGLIOCCA N R, TORRES A, MARGULIES J D, et al. Comparative analysis of illicit supply network structure and operations: Cocaine, wildlife, and sand. Journal of Illicit Economies and Development, 2021, 3 (1): 50- 73.
9 LARSON C. Asia’s hunger for sand takes toll on ecology. Science, 2018, 359, 964- 965.
10 KRAUSMANN F, WIEDENHOFER D, LAUK C, et al. Global socioeconomic material stocks rise 23-fold over the 20th century and require half of annual resource use. Proceedings of the National Academy of Sciences, National Academy of Sciences, 2017, 114 (8): 1880- 1885.
11 高抒. 论科学技术在我国海岸带采砂管理中的作用 [C]// 周光召. 面向21世纪的科技进步与社会经济发展(上册). 北京: 中国科学技术出版社, 1999.
12 毛野. 初论采沙对河床的影响及控制. 河海大学学报(自然科学版), 2000, (4): 92- 96.
13 张乔民. 香港海沙资源的勘探开发与管理. 自然资源学报, 2003, (4): 385- 393.
14 DUAN H, CAO Z, SHEN M, et al. Detection of illicit sand mining and the associated environmental effects in China’s fourth largest freshwater lake using daytime and nighttime satellite images. Science of The Total Environment, 2019, 647, 606- 618.
15 工业和信息化部, 国家发展改革委, 自然资源部, 等. 关于推进机制砂石行业高质量发展的若干意见 [EB/OL]. (2019-11-04)[2021-04-29]. http://www.gov.cn/zhengce/zhengceku/2019-11/13/content_5451478.htm.
16 CHEN Y. Construction: Limit China’s sand mining. Nature, 2017, 550 (7677): 457- 457.
17 国家发展改革委, 工业和信息化部, 公安部, 等. 关于印发《关于促进砂石行业健康有序发展的指导意见》的通知[EB/OL]. (2020-03-25)[2021-04-30]. http://www.gov.cn/zhengce/zhengceku/2020-03/27/content_5496182.htm.
18 CCTV-2《经济半小时》. 20210202 砂石涨价背后 [EB/OL]. (2021-02-02) [2021-04-29]. http://tv.cctv.com/2021/02/03/VIDEh06V6PnQmpC9TKxSIClq210203.shtml.
19 陈晓宏, 陈永勤. 珠江三角洲网河区水文与地貌特征变异及其成因. 地理学报, 2002, (4): 429- 436.
20 WANG Z. Risk analysis of slope instability of levees under river sand mining conditions. Water Science and Engineering, 2012, 5 (3): 10.
21 LUO X L, ZENG E Y, JI R Y, et al. Effects of in-channel sand excavation on the hydrology of the Pearl River Delta, China. Journal of Hydrology, 2007, 343 (3): 230- 239.
22 QIN Y, CHEN Z, DING B, et al. Impact of sand mining on the carbon sequestration and nitrogen removal ability of soil in the riparian area of Lijiang River, China. Environmental Pollution, 2020, 261, 114220.
23 MENG X, JIANG X, LI Z, et al. Responses of macroinvertebrates and local environment to short-term commercial sand dredging practices in a flood-plain lake. Science of The Total Environment, 2018, 631/632, 1350- 1359.
24 BENDIXEN M, BEST J, HACKNEY C, et al. Time is running out for sand. Nature, 2019, 571 (7763): 29- 31.
25 韩志远, 田向平, 刘峰. 珠江磨刀门水道咸潮上溯加剧的原因. 海洋学研究, 2010, 28 (2): 52- 59.
26 ZHAO M, YANG D, WANG P, et al. A market-based approach to marine sand resource management in the Pearl River estuary, China. Ocean & Coastal Management, 2015, 105, 56- 64.
27 WANG H, TIAN X, TANIKAWA H, et al. Exploring China’s materialization process with economic transition: Analysis of raw material consumption and its socioeconomic drivers. Environmental Science & Technology, 2014, 48 (9): 5025- 5032.
28 REN Z, JIANG M, CHEN D, et al. Stocks and flows of sand, gravel, and crushed stone in China (1978–2018): Evidence of the peaking and structural transformation of supply and demand. Resources, Conservation and Recycling, 2022, 180, 106173.
29 WANG H, SCHANDL H, WANG G, et al. Regional material flow accounts for China: Examining China’s natural resource use at the provincial and national level. Journal of Industrial Ecology, 2019, 23 (6): 1425- 1438.
30 TIAN B, WU W, YANG Z, et al. Drivers, trends, and potential impacts of long-term coastal reclamation in China from 1985 to 2010. Estuarine, Coastal and Shelf Science, 2016, 170, 83- 90.
31 WANG W, LIU H, LI Y, et al. Development and management of land reclamation in China. Ocean & Coastal Management, 2014, 102, 415- 425.
32 王洁军, 郎营. 突出生态保护核心地位, 加速砂石行业转型升级 [N]. 中国建材报, 2018-05-04(003).
33 乔龙德. 新时代 新定位 新目标 新发展 [N]. 中国建材报, 2019-07-25(001).
34 韩继先, 胡幼奕. 砂石行业的发展现状及发展趋势. 中国建材, 2013, (11): 102- 105.
35 砂石骨料网——砂石行业资讯数据平台 [EB/OL]. [2021-04-30]. https://www.cssglw.com/.
36 LAI X, SHANKMAN D, HUBER C, et al. Sand mining and increasing Poyang Lake’s discharge ability: A reassessment of causes for lake decline in China. Journal of Hydrology, 2014, 519, 1698- 1706.
37 王军, 姚仕明, 周银军. 我国河流泥沙资源利用的发展与展望. 泥沙研究, 2019, 44 (1): 73- 80.
38 安催花, 马翠丽, 张厚军. 黄河流域重要河道年度采砂控制总量研究. 人民黄河, 2015, 37 (9): 42- 44.
39 中华人民共和国国务院. 长江河道采砂管理条例 [EB/OL]. (2001-10-25)[2021-04-30]. http://www.gov.cn/gongbao/content/ 2001/content_61201.htm.
40 王卓甫, 杨志勇, 王道冠, 等. 河道砂石属性与权属安排研究. 自然资源学报, 2013, 28 (8): 1451- 1458.
41 中国人民共和国水利部. 中国河流泥沙公报 [EB/OL]. [2021-04-30]. http://www.mwr.gov.cn/sj/tjgb/szygb/.
42 DAI S B, YANG S L, LI M. The sharp decrease in suspended sediment supply from China’s rivers to the sea: Anthropogenic and natural causes. Hydrological Sciences Journal, 2009, 54 (1): 135- 146.
43 LI K, LIU X, ZHOU Y, et al. Temporal and spatial changes in macrozoobenthos diversity in Poyang Lake Basin, China. Ecology and Evolution, 2019, 9 (11): 6353- 6365.
44 矿材网. 河砂最高342元/方 广东全省砂石价格仍高位运行 [EB/OL]. (2018-12-05)[2021-04-30]. https://www.51ore.com/rmxw/26251.html.
45 广东省住房和城乡建设厅. 关于加强建筑工程材料价格风险管控的指导意见 [EB/OL]. (2018-08-30)[2021-04-30]. http://zfcxjst.gd.gov.cn/gkmlpt/content/1/1458/mpost_1458205.html#1424.
46 广州市混凝土行业协会信息网. 材价信息 [EB/OL]. [2021-04-30]. http://gzhnt.com/caijiaxinxi/.
47 TORRES A, SIMONI M U, KEIDING J K, et al. Sustainability of the global sand system in the Anthropocene. One Earth, 2021, 4 (5): 639- 650.
48 孙晶, 刘建国, 杨新军, 等. 人类世可持续发展背景下的远程耦合框架及其应用. 地理学报, 2020, 75 (11): 2408- 2416.
49 LIU J, HULL V, BATISTELLA M, et al. Framing sustainability in a telecoupled world. Ecology and Society, 2013, 36, 7870- 7885.
50 ABERGEL T, BROWN A, CAZZOLA P, et al. Energy technology perspectives 2017: Catalysing energy technology transformations [R]. Paris: International Energy Agency, 2017.
51 KENNEDY C A, STEWART I, FACCHINI A, et al. Energy and material flows of megacities. Proceedings of the National Academy of Sciences, National Academy of Sciences, 2015, 112 (19): 5985- 5990.
52 刘芳. 深圳海砂危楼事件调查 [N/OL]. 中国青年报(2013-03-22)[2021-05-01]. http://zqb.cyol.com/html/2013-03/22/nw.D110000zgqnb_20130322_1-05.htm.
53 DE LEEUW J, SHANKMAN D, WU G, et al. Strategic assessment of the magnitude and impacts of sand mining in Poyang Lake, China. Regional Environmental Change, 2010, 10 (2): 95- 102.
54 程晓娜, 张博, 董晓方, 等. 我国砂石土矿开采现状及对策研究. 中国矿业, 2015, 24 (5): 23- 26.
55 中国砂石协会. 广东阳江阳东区监管执法走过场, 河砂盗采愈发疯狂 [EB/OL]. [2021-05-01]. http://www.zgss.org.cn/zixun/hangye/10799.html.
56 中国砂石协会. 暴利使人疯狂! 广东通报多起涉黑腐败案件, 一半竟与河砂有关 [EB/OL]. (2019-04-15)[2021-05-01]. http://www.zgss.org.cn/zixun/hangye/7628.html.
57 中国海警. 中国海警破获特大非法采矿案 涉案海砂超5000万吨 案值逾20亿元 [EB/OL]. (2020-06-18)[2021-05-01]. https://baijiahao.baidu.com/s?id=1669821424797448943&wfr=spider&for=pc.
58 中国政府网. 关于印发《京津冀及周边地区、汾渭平原2020-2021年秋冬季大气污染综合治理攻坚行动方案》的通知 [EB/OL]. (2020-10-30)[2021-05-01]. http://www.mee.gov.cn/xxgk2018/xxgk/xxgk03/202011/t20201103_806152.html.
59 澎湃新闻. 高速交警集中整治砂石运输货车“抛洒遗漏”现象 [EB/OL]. (2020-03-16)[2021-05-06]. https://www.thepaper.cn/newsDetail_forward_6535037.
60 沈明, 沈镭, 张超, 等. 美国城市化背景下的砂石资源管理体系及相关政策研究. 中国矿业, 2015, 24 (11): 5- 8.
文章导航

/